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Overview

Typically, a mathematical optimization model assumes that a decision must be taken:

• by a single decision maker;

• in a single point in time;

• under perfect information;

• with the goal of optimizing a single objective.

However, in most real-world applications these assumptions do not hold!

In these scenarios, there is a functional dependence on various components of the input:

• Multi-level Optimization → followers’ reaction impact to the leader’s decision;

• Multi-stage Optimization → each stage’s decisions dependence on future stages
under uncertainty;

• Multi-objective Optimization → trade-offs in optimizing multiple criteria
simultaneously.

These dependencies can be all captured by the so-called Value Function.
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The Value Function of a Mixed-Integer Linear Problem

The Value Function (VF) of a Mixed-Integer Linear Problem (MILP) describes how the
optimal objective value varies when the right-hand side (RHS) changes.

Sensitivity analysis and Warm-starting for MILPs [Ralphs and Güzelsoy, 2004]

Improved algorithmic performance when solving a sequence of related MILPs.

Optimality conditions and valid inequalities [Bolusani and Ralphs, 2022]

VF provides optimality conditions for the follower’s problem in Bilevel Optimization,
which can be exploited to generate valid inequalities.

Decomposition methods [Hassanzadeh and Ralphs, 2014]

Benders’ algorithm for Two-stage stochastic Optimization and Bilevel Optimization.

Construction of the Efficient Frontier [Fallah et al., 2024]

The restricted VF contains the Efficient Frontier of a Multi-Objective MILP and can
be constructed in a single branch-and-bound tree.
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A Use Case: Multi-Objective Mixed-Integer Linear Optimization

A general Multi-Objective Mixed-Integer Linear Problem (MO-MILP) is defined by

vmin
{
(c0x ,Cx)

∣∣∣ x ∈ F
}
, (MO-MILP)

where

• F = {x ∈ X | Ax = b} and A ∈ Qk×n; b ∈ Qk ; X ⊆ Zr
+ × Rn−r

+ ;

• c0 ∈ Qn; C ∈ Qℓ×n; L = {1, . . . , ℓ}.
• Assumption: F is non-empty and bounded.

Decision space: n-dimensional space containing the feasible solutions F .
Criterion space: (ℓ+ 1)-dimensional space containing the images of F .

Nondominated Points

Given x̄ ∈ F , the image (c0x̄ ,Cx̄) is a nondominated point (NDP) if

∀x ∈ F , with x ̸= x̄ , c0x ≥ c0x̄ and (Cx)j ≥ (Cx̄)j , for all j ∈ L; and

either c0x > c0x̄ or (Cx)j > (Cx̄)j , for some j ∈ L.

Solving (MO-MILP) means describing the Efficient Frontier (EF), i.e., the set of NDPs.
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The Restricted Value Function

Let us consider a single-objective reformulation of (MO-MILP) in which:
• all-but-one criteria

{
C 1x , . . . ,C ℓx

}
are imposed as constraints;

• we make such constraints parametric, while keeping the other fixed.

Then, the Restricted Value Function is the function ϕL : Rℓ → R ∪ {±∞} defined by

ϕL(ζ) = min
{
c0x

∣∣∣ x ∈ S(ζ)
}
, (RVF)

where S(ζ) = {x ∈ X | Cx ≤ ζ,Ax = b} , for ζ ∈ Rℓ. We set ϕL(ζ) = ∞, if S(ζ) = ∅.

The epigraph of ϕL is defined by

epi(ϕL) =
{
(τ, ζ) ∈ R× Rℓ

∣∣∣ ϕL(ζ) ≤ τ
}
. (1)

• Note that, for all x ∈ F , the image (c0x ,Cx) ∈ epi(ϕL).
• In particular, if (c0x ,Cx) is an NDP, then c0x = ϕL(Cx).

Theorem [Fallah et al., 2024]

The EF of (MO-MILP) is a (possibly strict) subset of the boundary of epi(ϕL).
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An Example: The RVF and EF

Bi-objective

F

ϕL(ζ) =min 2x1 + 5x2 + 7x4 + 10x5 + 2x6 + 10x7

s.t. −x1 − 10x2 + 10x3 − 8x4 + x5 − 7x6 + 6x7 ≤ ζ

−x1 + 4x2 + 9x3 + 3x4 + 2x5 + 6x6 − 10x7 = 4

x4 + 5x2 ≤ 5

x7 + 5x2 ≤ 5

xj ∈ {0, 1}, ∀j ∈ {1, 2}
xj ∈ R+, ∀j ∈ {3, 4, . . . , 7}.
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On the Construction of the Restricted Value Function

• We want to find a description of the RVF, since it provides proofs for points to be
on the boundary of epi(ϕL).

• Such proofs have several important interpretations:
• Multi-objective Optimization → a point belongs to the EF;
• Multi-level Optimization → a follower’s response is optimal for the leader’s decision;
• Multi-stage Optimization → an early-stage decision is optimal for future stages.

• Generally, it is easier to construct lower approximations of the RVF.

• General Duality is the theory that defines and construct such approximations in
terms of dual functions of ϕL.

• Dual functions arise in many solution frameworks, specifically branch-and-bounds.

• We can iteratively refine a lower approximation of the RVF, by evaluating it using a
single branch-and-bound tree [Hassanzadeh and Ralphs, 2014].
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Duality Theory for the Restricted Value Function

The General Dual Problem [Tind and Wolsey, 1981] associated to (RVF) for a specific
ζ̂ ∈ Rℓ is

max
{
F (ζ̂)

∣∣∣ F (d) ≤ ϕL(d), ∀d ∈ Rℓ,F ∈ Υℓ
}
, (2)

where Υℓ ⊆
{
f
∣∣ f : Rℓ → R

}
. Some remarks:

• Feasible solutions to (2) are dual functions, i.e., lower approximations of ϕL.
• Strong duality holds if ϕL ∈ Υℓ.

• Let τ̂ ∈ R be given. Does (τ̂ , ζ̂) lie on the boundary of epi(ϕL)?

• Suppose F ∗ is an optimal dual function to (2). If F ∗(ζ̂) = τ̂ , then F ∗ certifies that

∃x ∈ F such that Cx = ζ̂ and c0x = τ̂ = F ∗(ζ̂) = ϕL(ζ̂)

• Therefore, F ∗ certifies that (τ̂ , ζ̂) lies on the boundary of epi(ϕL).

• In this case, F ∗ is a strong dual function at ζ̂.

Theorem

If ∃ a dual function F ∗ ∈ Υℓ optimal for (2) such that F ∗(ζ̂) = τ̂ , then (τ̂ , ζ̂) lies on the
boundary of epi(ϕL).
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Dual Approximations of the Restricted Value Function

Any B&B tree used to evaluate ϕL(ζ) encodes a dual function of the RVF/EF.
• Let T be the index set of the terminating nodes of the tree.
• The RVF of the LP relaxation at node t ∈ T is

ϕt
L(ζ) = min c0x

s.t. Cx ≤ ζ

Ax = b (BB.LP.P)

l t ≤ x ≤ ut , x ≥ 0

• By LP duality, we have that:

ϕt
L(ζ) = max vζ + wb + πl t + πut

s.t. vC + wA+ π + π ≤ c0 (BB.LP.D)

v , π ≤ 0, π ≥ 0

Given any collection D of solutions feasible to (BB.LP.D), we obtain that the function

F (ζ) = min
t∈T

max
(v,w,π,π)∈D

vζ + wb + πl t + πut , ∀ζ ∈ Rℓ, (3)

is dual to both the RVF and the EF.
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A finite Algorithm for constructing the Restricted Value Function

• Evaluate the RVF at a sequence of RHSs ζ’s using the branch-and-bound algorithm.

• When the RHS change, keep branching in the same tree, updating T .

• Maintain and update the collection D of dual solutions generated by solving the LP
relaxation.

• There is a finite sequence of ζ’s for which the algorithm converges finitely to the
exact RVF.

• The key for the efficiency of this algorithm is finding the right set of ζ’s.
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An Example: Evolution of the Dual Function

Node 0
ϕ0
L

= v1ζ + α1
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An Example: Evolution of the Dual Function

Node 0
ϕ0
L

= max
{
v1ζ + α1, v2ζ + α2

}
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An Example: Evolution of the Dual Function

Node 0
ϕ0
L

= max
{
v1ζ + α1, v2ζ + α2, v3ζ + α3

}
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An Example: Evolution of the Dual Function

Node 0
ϕ0
L
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v1ζ + α1, v2ζ + α2, v3ζ + α3, v4ζ + α4

}
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SYMPHONY

• SYMPHONY is an open source MILP solver framework with unique capabilities
• Can warm-start solution of a modified instance in the same tree.
• Can explicitly build dual functions from B&B trees.
• Can be used to construct the Value Function and the Efficient Frontier.

• Its infrastructure makes the Algorithm for the EF easy to implement.

• SYMPHONY is also used in the Bilevel MILP solver MibS, and can be used to
warm-start sequence of related MILPs arising in this setup (e.g., feasibility check).

• A generalized Benders’ algorithm for Two-stage Stochastic MILPs with recourse is
also being revived.
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Numerical Results

Instances:

• MO Knapsack Problem (KP);

• MO Set Partitioning Problem (SPP).

Setup:

• CPU: Apple M2 Pro;

• Time Limit: 4 hours.
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Final Remarks

Core concepts

• The Restricted Value Function encodes optimality conditions for MILPs.

• Duality Theory provides certificates of optimality by mean of strong dual functions

• There exists a single B&B tree whose dual function coincide to the RVF.

These concepts can serve as the foundation of a new class of algorithms for

• Multi-objective Optimization;

• Multi-level Optimization;

• Multi-stage Optimization.

Thanks for your attention!
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