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Typically, a mathematical optimization model assumes that a decision must be taken:
® by a single decision maker;
® in a single point in time;
® under perfect information;

® with the goal of optimizing a single objective.

However, in most real-world applications these assumptions do not hold!

In these scenarios, there is a functional dependence on various components of the input:

® Multi-level Optimization — followers’ reaction impact to the leader’s decision;

® Multi-stage Optimization — each stage’s decisions dependence on future stages
under uncertainty;

® Multi-objective Optimization — trade-offs in optimizing multiple criteria
simultaneously.

These dependencies can be all captured by the so-called Value Function.
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The Value Function of a Mixed-Integer Linear Problem

The Value Function (VF) of a Mixed-Integer Linear Problem (MILP) describes how the
optimal objective value varies when the right-hand side (RHS) changes.

Sensitivity analysis and Warm-starting for MILPs [Ralphs and Giizelsoy, 2004]

Improved algorithmic performance when solving a sequence of related MILPs.

Optimality conditions and valid inequalities [Bolusani and Ralphs, 2022]

VF provides optimality conditions for the follower's problem in Bilevel Optimization,
which can be exploited to generate valid inequalities.

Decomposition methods [Hassanzadeh and Ralphs, 2014]

Benders’ algorithm for Two-stage stochastic Optimization and Bilevel Optimization.

Construction of the Efficient Frontier [Fallah et al., 2024]

The restricted VF contains the Efficient Frontier of a Multi-Objective MILP and can
be constructed in a single branch-and-bound tree.
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A Use Case: Multi-Objective Mixed-Integer Linear Optimization

A general Multi-Objective Mixed-Integer Linear Problem (MO-MILP) is defined by
vmin {(cox, Cx) ‘ x € f} , (MO-MILP)

where
e F={xeX|Ax=b}and Ac Q" bc Q" X CZ| xR}
o lecQm CceQ L={1,...,0).
® Assumption: F is non-empty and bounded.

Decision space: n-dimensional space containing the feasible solutions F.
Criterion space: (¢ + 1)-dimensional space containing the images of F. J

Nondominated Points

Given X € F, the image (c’%, CX) is a nondominated point (NDP) if
Vx € F, with x # X, c®x > ¢’ and (Cx); > (CX);, for all j € L; and

either c’x > % or (Cx); > (CX);, for some j € L.

Solving (MO-MILP) means describing the Efficient Frontier (EF), i.e., the set of NDPs.
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The Restricted Value Function

Let us consider a single-objective reformulation of (MO-MILP) in which:
® all-but-one criteria {C1><7 e CZX} are imposed as constraints;
® we make such constraints parametric, while keeping the other fixed.

Then, the Restricted Value Function is the function ¢, : R — R U {£co} defined by
61(¢) = min { ’ xeS(Q)}, (RVF)

where S(¢) = {x € X | Cx < ¢, Ax = b}, for ¢ € R*. We set ¢,(¢) = oo, if S(¢) = 0.

The epigraph of ¢, is defined by
epi(91) = {(r,Q) e Rx R | u(Q) <7} (1)
® Note that, for all x € F, the image (c’x, Cx) € epi(¢r).
® In particular, if (c°x, Cx) is an NDP, then cx = ¢, (Cx).

Theorem [Fallah et al., 2024]
The EF of (MO-MILP) is a (possibly strict) subset of the boundary of epi(¢.).
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An Example: The RVF and EF

#L(¢) =min 2x1 + 5x2 + 7xa + 10x5 + 2x6 + 10x7 Bi-obiecti
s.t.  —x1 — 10x2 + 10x3 — 8x4 + x5 — 7x6 + 6x7 < ¢ -0 JeCtlve
—x1 + 4x2 + 9x3 + 3x4 + 2x5 + 6x6 — 10x7 = 4

X4 + 5X2 S 5
x7+5x2 <5 F
x € (0,1}, Vje {12}
x €Ry, Vje{3,4,...,7}
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On the Construction of the Restricted Value Function

® \We want to find a description of the RVF, since it provides proofs for points to be
on the boundary of epi(¢.).
® Such proofs have several important interpretations:

® Multi-objective Optimization — a point belongs to the EF;
® Multi-level Optimization — a follower’s response is optimal for the leader’s decision;
® Multi-stage Optimization — an early-stage decision is optimal for future stages.

® Generally, it is easier to construct lower approximations of the RVF.

® General Duality is the theory that defines and construct such approximations in
terms of dual functions of ¢;.

® Dual functions arise in many solution frameworks, specifically branch-and-bounds.

® \We can iteratively refine a lower approximation of the RVF, by evaluating it using a
single branch-and-bound tree [Hassanzadeh and Ralphs, 2014].
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Duality Theory for the Restricted Value Function

The General Dual Problem [Tind and Wolsey, 1981] associated to (RVF) for a specific
CeRlis

max {F({) | F(d) < 6u(d).vd e R\, Fe T}, (2)
where T¢ C {f | f R — ]R}. Some remarks:

® Feasible solutions to (2) are dual functions, i.e., lower approximations of ¢;.
e Strong duality holds if ¢, € T*.

Let # € R be given. Does (#,¢) lie on the boundary of epi(¢.)?

® Suppose F* is an optimal dual function to (2). If F*(¢) = 7, then F* certifies that

Ix € F such that Cx =  and ’x =7 = F*({) = ¢.(¢)

Therefore, F* certifies that (7, f) lies on the boundary of epi(¢.).

® |n this case, F* is a strong dual function at f
v

If 3 a dual function F* € T* optimal for (2) such that F*({) = #, then (#,() lies on the
boundary of epi(¢.).
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Dual Approximations of the Restricted Value Function

Any B&B tree used to evaluate ¢,({) encodes a dual function of the RVF/EF.
® |et T be the index set of the terminating nodes of the tree.
® The RVF of the LP relaxation at node t € T is

$1(¢) = min ’x
s.t. Cx < ¢
Ax=1b (BB.LP.P)
F<x<u,x>0

® By LP duality, we have that:

#1(¢) = max v¢ + wb + zl* +7u'
st.vC+wA+T+7<C° (BB.LP.D)
v,T<0,mr>0
Given any collection D of solutions feasible to (BB.LP.D), we obtain that the function

F(¢Q)=min =~ max  v(+ wb +xlt+ 7', V¢ eR, (3)
T)E

teT (vow,m,m)

is dual to both the RVF and the EF.
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A finite Algorithm for constructing the Restricted Value Function

® Evaluate the RVF at a sequence of RHSs ('s using the branch-and-bound algorithm.
® When the RHS change, keep branching in the same tree, updating T.

® Maintain and update the collection D of dual solutions generated by solving the LP
relaxation.

® There is a finite sequence of ('s for which the algorithm converges finitely to the
exact RVF.

® The key for the efficiency of this algorithm is finding the right set of ('s.
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An Example: Evolution of the Dual Function
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An Example: Evolution of the Dual Function

Node 0
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An Example: Evolution of the Dual Function

Node 0
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An Example: Evolution of the Dual Function

9 = max{\/lC +al V24 a?,v3¢+ a3, VA + a4}
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SYMPHONY

® SYMPHONY is an open source MILP solver framework with unique capabilities

® Can warm-start solution of a modified instance in the same tree.
® Can explicitly build dual functions from B&B trees.
® Can be used to construct the Value Function and the Efficient Frontier.

® |ts infrastructure makes the Algorithm for the EF easy to implement.

® SYMPHONY is also used in the Bilevel MILP solver MibS, and can be used to
warm-start sequence of related MILPs arising in this setup (e.g., feasibility check).

® A generalized Benders' algorithm for Two-stage Stochastic MILPs with recourse is
also being revived.
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Numerical Results

Instances: Setup:
® MO Knapsack Problem (KP); e CPU: Apple M2 Pro;
® MO Set Partitioning Problem (SPP). ® Time Limit: 4 hours.
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Final Remarks

Core concepts

® The Restricted Value Function encodes optimality conditions for MILPs.
® Duality Theory provides certificates of optimality by mean of strong dual functions

® There exists a single B&B tree whose dual function coincide to the RVF.

These concepts can serve as the foundation of a new class of algorithms for
® Multi-objective Optimization;
® Multi-level Optimization;

® Multi-stage Optimization.
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® Multi-stage Optimization.

Thanks for your attention!
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