The Restricted Value Function of MILPs and its construction with SYMPHONY

Federico Battista¹, Samira Fallah¹ and Ted K. Ralphs¹

¹COR@L Lab, Department of Industrial and System Engineering, Lehigh University

14th of March, 2025

Overview

Typically, a mathematical optimization model assumes that a **decision** must be taken:

- by a single decision maker;
- in a single point in time;
- under perfect information;
- with the goal of optimizing a single objective.

However, in most real-world applications these assumptions do not hold!

In these scenarios, there is a functional dependence on various components of the input:

- Multi-level Optimization \rightarrow followers' reaction impact to the leader's decision;
- Multi-stage Optimization \rightarrow each stage's decisions dependence on future stages under uncertainty;
- Multi-objective Optimization → trade-offs in optimizing multiple criteria simultaneously.

These dependencies can be all captured by the so-called Value Function.

The Value Function of a Mixed-Integer Linear Problem

The Value Function (VF) of a Mixed-Integer Linear Problem (MILP) describes how the **optimal objective value** varies when the **right-hand side** (RHS) changes.

Sensitivity analysis and Warm-starting for MILPs [Ralphs and Güzelsoy, 2004]

Improved algorithmic performance when solving a sequence of related MILPs.

Optimality conditions and valid inequalities [Bolusani and Ralphs, 2022]

VF provides optimality conditions for the follower's problem in **Bilevel Optimization**, which can be exploited to generate valid inequalities.

Decomposition methods [Hassanzadeh and Ralphs, 2014]

Benders' algorithm for Two-stage stochastic Optimization and Bilevel Optimization.

Construction of the Efficient Frontier [Fallah et al., 2024]

The **restricted VF** contains the Efficient Frontier of a **Multi-Objective MILP** and can be constructed in a single branch-and-bound tree.

A Use Case: Multi-Objective Mixed-Integer Linear Optimization

A general Multi-Objective Mixed-Integer Linear Problem (MO-MILP) is defined by

$$\operatorname{vmin}\left\{\left(c^{0}x,Cx\right)\mid x\in\mathcal{F}\right\},\tag{MO-MILP}$$

where

•
$$\mathcal{F} = \{x \in X \mid Ax = b\}$$
 and $A \in \mathbb{Q}^{k \times n}$; $b \in \mathbb{Q}^k$; $X \subseteq \mathbb{Z}^r_+ \times \mathbb{R}^{n-r}_+$;

•
$$c^0 \in \mathbb{Q}^n$$
; $C \in \mathbb{Q}^{\ell \times n}$; $L = \{1, \ldots, \ell\}$

• Assumption: \mathcal{F} is non-empty and bounded.

Decision space: *n*-dimensional space containing the feasible solutions \mathcal{F} . **Criterion space**: $(\ell + 1)$ -dimensional space containing the images of \mathcal{F} .

Nondominated Points

Given $\bar{x} \in \mathcal{F}$, the image $(c^0 \bar{x}, C \bar{x})$ is a **nondominated point** (NDP) if

$$\forall x \in \mathcal{F}$$
, with $x
eq ar{x}, c^0 x \geq c^0 ar{x}$ and $(Cx)_j \geq (Car{x})_j$, for all $j \in L$; and

either $c^0 x > c^0 \overline{x}$ or $(Cx)_j > (C\overline{x})_j$, for some $j \in L$.

Solving (MO-MILP) means describing the Efficient Frontier (EF), i.e., the set of NDPs.

F. Battista, S. Fallah & T. K. Ralphs

The Restricted Value Function

Let us consider a single-objective reformulation of (MO-MILP) in which:

- all-but-one criteria $\{C^1x, \ldots, C^\ell x\}$ are imposed as constraints;
- we make such constraints parametric, while keeping the other fixed.

Then, the **Restricted Value Function** is the function $\phi_L : \mathbb{R}^\ell \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$\phi_L(\zeta) = \min\left\{c^0 x \mid x \in \mathcal{S}(\zeta)\right\},\tag{RVF}$$

where $\mathcal{S}(\zeta) = \{x \in X \mid Cx \leq \zeta, Ax = b\}$, for $\zeta \in \mathbb{R}^{\ell}$. We set $\phi_L(\zeta) = \infty$, if $\mathcal{S}(\zeta) = \emptyset$.

The epigraph of ϕ_L is defined by

$$epi(\phi_L) = \left\{ (\tau, \zeta) \in \mathbb{R} \times \mathbb{R}^\ell \mid \phi_L(\zeta) \le \tau \right\}.$$
(1)

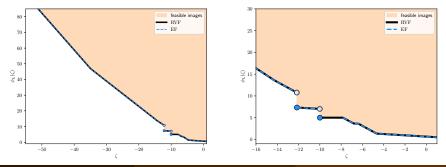
- Note that, for all $x \in \mathcal{F}$, the image $(c^0x, Cx) \in epi(\phi_L)$.
- In particular, if (c^0x, Cx) is an NDP, then $c^0x = \phi_L(Cx)$.

Theorem [Fallah et al., 2024]

The EF of (MO-MILP) is a (possibly strict) subset of the boundary of $epi(\phi_L)$.

An Example: The RVF and EF

$$\begin{array}{c|c} \phi_L(\zeta) = \min & 2x_1 + 5x_2 + 7x_4 + 10x_5 + 2x_6 + 10x_7 \\ \text{s.t.} & -x_1 - 10x_2 + 10x_3 - 8x_4 + x_5 - 7x_6 + 6x_7 \le \zeta \\ & -x_1 + 4x_2 + 9x_3 + 3x_4 + 2x_5 + 6x_6 - 10x_7 = 4 \\ & x_4 + 5x_2 \le 5 \\ & x_7 + 5x_2 \le 5 \\ & x_j \in \{0,1\}, \quad \forall j \in \{1,2\} \\ & x_j \in \mathbb{R}_+, \quad \forall j \in \{3,4,\ldots,7\}. \end{array} \right)$$
Bi-objective



F. Battista, S. Fallah & T. K. Ralphs

March 14th, 2025

- We want to find a description of the RVF, since it provides proofs for points to be on the **boundary** of epi(φ_L).
- Such proofs have several important interpretations:
 - Multi-objective Optimization → a point belongs to the EF;
 - Multi-level Optimization \rightarrow a follower's response is optimal for the leader's decision;
 - Multi-stage Optimization \rightarrow an early-stage decision is optimal for future stages.
- Generally, it is easier to construct lower approximations of the RVF.
- General Duality is the theory that defines and construct such approximations in terms of dual functions of ϕ_L .
- Dual functions arise in many solution frameworks, specifically branch-and-bounds.
- We can iteratively refine a **lower approximation** of the RVF, by evaluating it using a single branch-and-bound tree [Hassanzadeh and Ralphs, 2014].

The General Dual Problem [Tind and Wolsey, 1981] associated to (RVF) for a specific $\hat{\zeta} \in \mathbb{R}^\ell$ is

$$\max\left\{F(\hat{\zeta}) \mid F(d) \le \phi_L(d), \forall d \in \mathbb{R}^\ell, F \in \Upsilon^\ell\right\},\tag{2}$$

where $\Upsilon^{\ell} \subseteq \{f \mid f : \mathbb{R}^{\ell} \to \mathbb{R}\}$. Some remarks:

- Feasible solutions to (2) are dual functions, i.e., lower approximations of ϕ_L .
- Strong duality holds if $\phi_L \in \Upsilon^{\ell}$.
- Let $\hat{\tau} \in \mathbb{R}$ be given. Does $(\hat{\tau}, \hat{\zeta})$ lie on the boundary of epi (ϕ_L) ?
- Suppose F^* is an optimal dual function to (2). If $F^*(\hat{\zeta}) = \hat{\tau}$, then F^* certifies that

$$\exists x \in \mathcal{F} \text{ such that } Cx = \hat{\zeta} \text{ and } c^0 x = \hat{\tau} = F^*(\hat{\zeta}) = \phi_L(\hat{\zeta})$$

- Therefore, F^* certifies that $(\hat{\tau}, \hat{\zeta})$ lies on the boundary of epi (ϕ_L) .
- In this case, F^{*} is a strong dual function at ζ̂.

Theorem

If \exists a dual function $F^* \in \Upsilon^{\ell}$ optimal for (2) such that $F^*(\hat{\zeta}) = \hat{\tau}$, then $(\hat{\tau}, \hat{\zeta})$ lies on the boundary of $epi(\phi_L)$.

Dual Approximations of the Restricted Value Function

Any B&B tree used to evaluate $\phi_L(\zeta)$ encodes a **dual function** of the RVF/EF.

- Let T be the index set of the terminating nodes of the tree.
- The RVF of the LP relaxation at node $t \in T$ is

$$\phi_{L}^{t}(\zeta) = \min c^{0}x$$

s.t. $Cx \leq \zeta$
 $Ax = b$
 $l^{t} \leq x \leq u^{t}, x \geq 0$ (BB.LP.P)

By LP duality, we have that:

$$\phi_{L}^{t}(\zeta) = \max v\zeta + wb + \underline{\pi}I^{t} + \overline{\pi}u^{t}$$

s.t. $vC + wA + \underline{\pi} + \overline{\pi} \le c^{0}$ (BB.LP.D)
 $v, \overline{\pi} \le 0, \underline{\pi} \ge 0$

Given any collection D of solutions feasible to (BB.LP.D), we obtain that the function

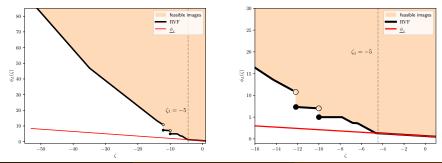
$$F(\zeta) = \min_{t \in \mathcal{T}} \max_{(v,w,\underline{\pi},\overline{\pi})\in D} v\zeta + wb + \underline{\pi}I^t + \overline{\pi}u^t, \qquad \forall \zeta \in \mathbb{R}^\ell,$$
(3)

is dual to both the RVF and the EF.

A finite Algorithm for constructing the Restricted Value Function

- Evaluate the RVF at a sequence of RHSs ζ 's using the branch-and-bound algorithm.
- When the RHS change, keep branching in the same tree, updating T.
- Maintain and update the collection *D* of dual solutions generated by solving the LP relaxation.
- There is a finite sequence of ζ's for which the algorithm converges finitely to the exact RVF.
- The key for the efficiency of this algorithm is finding the right set of ζ 's.

$$\frac{\phi_I^0}{\phi_I^0} = v^1 \zeta + \alpha^1$$

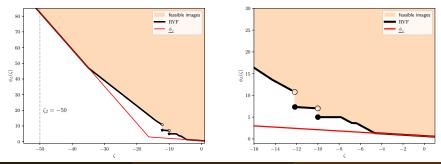


F. Battista, S. Fallah & T. K. Ralphs

ICS 2025

March 14th, 2025

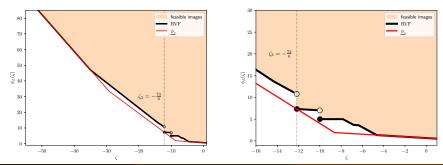
$$\underline{\phi}_{\underline{L}}^{0} = \max\left\{v^{1}\zeta + \alpha^{1}, v^{2}\zeta + \alpha^{2}\right\}$$



F. Battista, S. Fallah & T. K. Ralphs

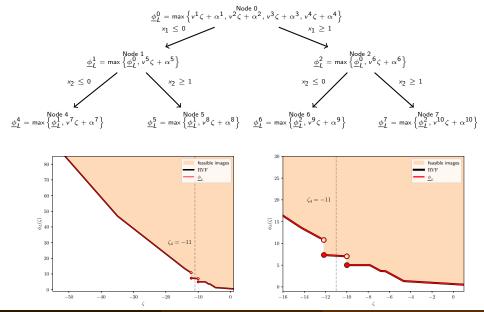
March 14th, 2025

$$\underline{\phi}_{\underline{L}}^{0} = \max \left\{ v^{1}\zeta + \alpha^{1}, v^{2}\zeta + \alpha^{2}, v^{3}\zeta + \alpha^{3} \right\}$$



F. Battista, S. Fallah & T. K. Ralphs

March 14th, 2025



F. Battista, S. Fallah & T. K. Ralphs

ICS 2025

March 14th, 2025

SYMPHONY

- SYMPHONY is an open source MILP solver framework with unique capabilities
 - Can warm-start solution of a modified instance in the same tree.
 - Can explicitly build dual functions from B&B trees.
 - Can be used to construct the Value Function and the Efficient Frontier.
- Its infrastructure makes the Algorithm for the EF easy to implement.
- SYMPHONY is also used in the **Bilevel MILP** solver MibS, and can be used to warm-start sequence of related MILPs arising in this setup (e.g., feasibility check).
- A generalized Benders' algorithm for **Two-stage Stochastic** MILPs with recourse is also being revived.

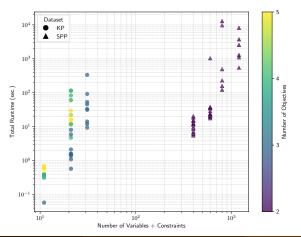
Numerical Results

Instances:

- MO Knapsack Problem (KP);
- MO Set Partitioning Problem (SPP).

Setup:

- CPU: Apple M2 Pro;
- Time Limit: 4 hours.



Core concepts

- The Restricted Value Function encodes optimality conditions for MILPs.
- Duality Theory provides certificates of optimality by mean of strong dual functions
- There exists a single B&B tree whose dual function coincide to the RVF.

These concepts can serve as the foundation of a new class of algorithms for

- Multi-objective Optimization;
- Multi-level Optimization;
- Multi-stage Optimization.

Core concepts

- The Restricted Value Function encodes optimality conditions for MILPs.
- Duality Theory provides certificates of optimality by mean of strong dual functions
- There exists a single B&B tree whose dual function coincide to the RVF.

These concepts can serve as the foundation of a new class of algorithms for

- Multi-objective Optimization;
- Multi-level Optimization;
- Multi-stage Optimization.

Thanks for your attention!

- S. Bolusani and T.K. Ralphs. A framework for generalized benders' decomposition and its application to multilevel optimization. <u>Mathematical Programming Series B</u>, 196: 389–426, 2022. doi: 10.1007/s10107-021-01763-7. URL https://arxiv.org/abs/2104.06496.
- Samira Fallah, Ted K. Ralphs, and Natashia L. Boland. On the relationship between the value function and the efficient frontier of a mixed integer linear optimization problem. <u>Mathematical Methods of Operations Research</u>, 2024. ISSN 1432-2994. doi: 10.1007/s00186-024-00871-2. URL https://arxiv.org/abs/2303.00785.
- A. Hassanzadeh and T.K. Ralphs. A generalization of benders' algorithm for two-stage stochastic optimization problems with mixed integer recourse. Technical Report 14T-005, COR@L Laboratory, Lehigh University, 2014. URL http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf.
- T.K. Ralphs and M. Güzelsoy. Duality, warm starting, and sensitivity analysis in integer programming. Technical Report 04T-022, COR@L Laboratory, Lehigh University, 2004. URL http://ise.lehigh.edu/sites/ise.lehigh.edu/files/04t_022.pdf.
- Jorgen Tind and Laurence A. Wolsey. An elementary survey of general duality theory in mathematical programming. <u>Mathematical Programming</u>, 21(1):241–261, December 1981. ISSN 1436-4646. doi: 10.1007/BF01584248. URL https://doi.org/10.1007/BF01584248.