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1DIAG, Università di Roma “Sapienza”
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Some definitions

Given an undirected graph G = (V ,E ), a set S ⊆ V of pairwise
non-adjacent vertices is called stable.
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Some definitions

Given an undirected graph G = (V ,E ), a set S ⊆ V of pairwise
non-adjacent vertices is called stable.
A set K ⊆ V of pairwise adjacent vertices is called a clique.

The maximum cardinality of such a sets in G are denoted by α(G )
and ω(G ), respectively.
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Some definitions

A k-coloring in G is a partition of V into k stable sets.

The minimum number k s.t. G has a k-coloring is denoted by
χ(G ).

The Graph Coloring Problem (GCP) calls for finding χ(G )
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Some definitions

A relaxation of the GCP is given by the so-called fractional
chromatic number χf (G )

χf (G ) = min
∑
s∈S

ys

s.t.∑
s∈S(i)

ys ≥ 1, i ∈ V

ys ≥ 0

where S is the collection of all stable sets in G and S(i) ⊆ S is the
subset of stable sets including vertex i
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Motivation

• The computation of χ(G ) and χf (G ) are well-known to be
NP-Hard1

• χ(G ) is also hard to approximate2

• Identify tight lower bounds of χ(G ) is of importance

• Lower bounds from linear relaxations are cheap to compute
but can be rather weak

• Lower bounds from semidefinite programming (SDP) are
stronger in general but harder to handle in practice

1Garey and David S. Johnson 1990
2Khot 2001
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Semidefinite Lower Bounds for GCP

SDP approaches are based on the following result:

Lovász Theta Function1

ω(G ) ≤ θ(Ḡ ) ≤ χ(G )

• Ḡ is the complement graph of G

• θ(Ḡ ) can be computed in polynomial time via SDP

• It provides a good trade off between quality of the bound and
efficiency

1Lovász 1979
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On the Lovász Theta function

• Lovász also proved that θ(Ḡ ) ≤ χf (G )1

• Thus, the gap χ(G )− θ(Ḡ ) tends to increase as χf (G ) gets
closer to ω(G )

• Improvements of θ(Ḡ ) have been investigated through the
addition of valid inequalities in Szegedy 1994, Dukanovic and
Rendl 2007 and more recently in Gaar and Rendl 2020

• χf (G ) represents a target value not straightforward to reach
with SDP

1Grötschel, Lovász, and Schrijver 2012
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Lovász-Schrijver Lifting operator1

Consider the convex hull of integer solutions of some 0-1LP

P := conv {x ∈ {0, 1}n : Ax ≤ b} ,

along with its continuous relaxation

L := {x ∈ [0, 1]n : Ax ≤ b} ⊇ P.

For i = 1, . . . , n generate the set of non-linear inequalities

xi (Ax − b) ≤ 0

(1− xi )(Ax − b) ≤ 0
(1)

1Lovász and Schrijver 1991
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Lovász-Schrijver Lifting operator1

Linearize (1) as follows:

• replace the products xixj with xij and xixi with xi
• Let X ∈ Sn be a symmetric, real matrix with

(X )ij = xij and x = diag(X )

M+(L) :=

{
X ∈ Sn : (1) hold, x = diag(X ),

(
1 xT

x X

)
⪰ 0

}
The projection of M+(L) onto the x-space is valid for P and in
general tighter than L.

• variables:

(
n
2

)
• constraints: O(nm)

1Lovász and Schrijver 1991
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Lovász-Schrijver Lifting operator1

• Applications of this operator to 0-1LP have been
investigated2,3

• Optimizing over M+(L) yields strong bounds for P in general

• A significant drawback is given by the sizes of the resulting
SDPs

In this work: we investigate a new SDP relaxation obtained from
the application of the Lovász-Schrijver M+(·) lifting operator to a
compact linear formulation for the GCP

1Lovász and Schrijver 1991
2Dash 2001
3Burer and Vandenbussche 2006
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Representative formulation for GCP

Given a graph G = (V ,E ), the natural LP formulation1 assign a
color to each vertex, involving O(|V |2) variables and O(|V ||E |)
constraints.

Campêlo et al.1 proposed a more compact formulation, in which
each color class is represented by exactly one vertex, that is

∀ u ∈ V , v ∈ N̄(u)∪u, let xuv =

{
1 if u represent the color of v

0 otherwise

where N̄(v) be the set of non-adjacent nodes to v in G .

1Méndez Dıaz and Zabala 2000
2Campêlo, Corrêa, and Frota 2004
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Representative formulation for GCP

∀ u ∈ V , v ∈ N̄(u)∪u, let xuv =

{
1 if u represent the color of v

0 otherwise

χ(G ) =min
∑
u∈V

xuu

s.t.
∑

u∈N̄(v)∪v

xuv ≥ 1 ∀ v ∈ V (2)

xuv + xuw ≤ xuu ∀ u ∈ V , (v ,w) ∈ G [N̄(u)] (3)

xuv ∈ {0, 1} ∀ u ∈ V , v ∈ N̄(u) ∪ u.

Idea: apply M+(·) to the following polytope

REP(G ) :=
{
x ∈ [0, 1]2|Ē |+|V | : (2), (3) hold

}
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M+(REP(G ))

Let us consider inequality (2) for a fixed v ∈ V , and consider a
variable xij for i ∈ V and j ∈ N̄(i) ∪ i

xij

( ∑
u∈N̄(v)∪v

xuv −1

)
≥ 0
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M+(REP(G ))

Let us consider inequality (2) for a fixed v ∈ V , and consider a
variable xij for i ∈ V and j ∈ N̄(i) ∪ i
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xuv − 1 −
∑
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xijxuv +xij

)
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∑
u∈N̄(v)∪v

(xuv − xij ,uv ) + xij ≥ 1

Repeat this process for all variables and for all constraints in
REP(G )
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M+(REP(G )): some remarks

• We assume bound constraints 0 ≤ x ≤ 1 are in Ax ≤ b

• Some constraints generated by M+(·) may be implied by the
PSD condition

• The size of M+(REP(G )) depends on |Ē |, becoming large
soon for sparse graphs

• To enhance the practical tractability, we define a relaxation of
M+(REP(G )), denoted by M̂+(REP(G )), obtained by
eliminating some class of inequalities

• Inequalities to be removed selected by preliminary experiments

• Of course we have

M̂+(REP(G )) ⊇ M+(REP(G ))

15/24



M̂+(REP(G ))

min
∑
u∈V

xuu

s.t.
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Computational Experiments

Comparison among:
θ(Ḡ ), M̂+(REP(G )) and χf (G ).

Solver: SDPNAL+1 (Alternating Direction Method of Multipliers)

Instances:

• DIMACS second implementation challenge’s graphs2

• Petersen’s graph, from the Kneser graphs class

• Erdös–Rényi random graphs: G (n, p) is a random graph with
n nodes, in which each edge appears with probability p

CPU time limit (solver): 4 hours
Tolerance: 10−5

1Yang, Sun, and Toh 2015
2David S Johnson and Trick 1996
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Computational Experiments: size of M̂+(REP(G ))

Graph |V | d% n m

1-FullIns 3 30 23 701 1.166.901
2-Insertions 3 37 11 1.226 2.627.626
3-Insertions 3 56 7 2.917 15.597.685
myciel3 11 36 82 7.534
myciel4 23 28 388 277.867
myciel5 47 22 1.738 9.624.718
petersen 10 33 71 5.671
DSJC125.9 125 90 1.704 15.500.707
r125.1c 125 97 624 423.622
G(40,.5) 40 50 865 3.406.753
G(40,.66) 40 66 603 1.498.981
G(40,.75) 40 75 467 766.105

18/24



Computational Experiments

Graph |V | d% θ(Ḡ ) M̂+(REP(G )) χf (G ) χ(G )

1-FullIns 3 30 23 3.064 †3.294 3.333 4
2-Insertions 3 37 11 2.104 2.434 2.423 4
3-Insertions 3 56 7 2.068 †2.349 2.334 4
myciel3 11 36 2.400 3.036 2.900 4
myciel4 23 28 2.530 3.267 3.245 5
myciel5 47 22 2.639 †3.465 3.553 6
petersen 10 33 2.500 2.720 2.500 3
DSJC125.9 125 90 37.768 †- 42.727 44
r125.1c 125 97 46.000 †- 46.00 46
G(40,.5) 40 50 6.301 †6.277 7.030 8
G(40,.66) 40 66 9.260 †9.126 10.371 11
G(40,.75) 40 75 11.111 11.146 12.030 13
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Conclusions & Future works

• We presented a new SDP relaxation for the GCP obtained by
the application of M+(·) operator

• We attempted to handle the size of the SDP by choosing a
compact binary formulation of the GCP and then relaxing
some class of constraints from M+(REP(G ))

• Even if the state-of-the-art solver for large scale SDPs
SDPNAL+ can handle such formulations, still they are time
consuming

• However, computational experiments show that M+(REP(G ))
can yield bounds over χf (G )

• The development of dedicated algorithms for solving such
SDPs may allow to the resolution of bigger instances, and
thus give a clearer picture on their quality
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Thanks for your attention!
Questions?
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Lovász, László (1979). “On the Shannon capacity of a graph”.
In: IEEE Transactions on Information theory 25.1, pp. 1–7.

23/24



References III
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