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The Setting

• First-level (aka Leader) variables: x ∈ X ⊆ Zr1 × Rn1−r1

• Second-level (aka Follower) variables: y ∈ Y ⊆ Zr2 × Rn2−r2

Mixed-Integer Bilevel Linear Problem

min
x,y

{
cx + d1y | x ∈ X , y ∈ P1(x), y ∈ argmin{d2z | z ∈ P2(x) ∩ Y }

}
, (MIBLP)

where

P1(x) =
{
y ∈ Rn2

+ | G 1y ≥ b1 − A1x
}
,

P2(x) =
{
y ∈ Rn2

+ | G 2y ≥ b2 − A2x
}
.

Assumptions

1 All input data are integer

2 All first-level variables are integer and appear in second-level constraints

3 The feasible regions are all bounded
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The Notation

Let us denote

Rational reaction set

R(x) =
{
y ∈ S(x) | d2y ≤ d2ȳ , ∀ȳ ∈ S(x)

}
⇒ follower will respond optimally to leader’s decision.

Bilevel Feasible Points

F = {(x , y) ∈ S | y ∈ R(x)} ,

where

• P = {(x , y) ∈ Rn1 × Rn2 | y ∈ P1(x) ∩ P2(x)},
• S = {(x , y) ∈ X × Y | (x , y) ∈ P},
• S(x) = {y ∈ Y | (x , y) ∈ S} ⇒ follower’s feasible points for a given leader’s

decision.

Optimistic setup

Whenever |R(x)| > 1, follower selects the response most favorable for the leader.

F. Battista & T. K. Ralphs ISMP 2024 July 24th, 2024 3 / 20



A Running Example

Let us consider the following example from Moore and Bard [1990]:

 optimal solution
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objective

F

x

y

min
x∈Z+

− x − 10y

s.t. y ∈ argmin {y :

−5x + 4y ≤ 6

x + 2y ≤ 10

2x − y ≤ 15

2x + 10y ≥ 15

y ∈ Z+ }
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Polyhedral Reformulation

Theorem (Tahernejad and Ralphs [2020])

Under the stated assumptions, we have that

min
(x,y)∈F

cx + d1y = min
(x,y)∈conv(F)

cx + d1y . (1)
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x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)

min − x − 10y

s.t. (x , y) ∈ conv(F)

• Reformulation (1) suggests a Branch-and-Cut algorithm, similar to that for
MILPs [DeNegre and Ralphs, 2009]

• Dual bounds can be obtained by optimizing over a relaxed feasible region

• The goal is to approximate conv(F) with linear inequalities
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Branch-and-Cut Algorithm

• The basic framework presents many similarities to that used for MILPs, but with at
least as many subtle differences.

Components

• Bounding
• Dual bound ⇒ A “tractable” relaxation strengthened with valid inequalities
• Primal bound ⇒ Feasible solutions

• Branching ⇒ Valid disjunctions

• Cut generation ⇒ Valid inequalities for conv(F)

• Search strategies

• Preprocessing methods

• Primal heuristics

• Control mechanisms

• In this talk we focus on the highlighted components.
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Dual bounds

Standard relaxations

1 S ⇒ Relaxing the optimality constraint of the second-level problem (MILP
relaxation).

2 P ⇒ Relaxing the optimality constraint of the second-level problem and integrality
constraints (LP relaxation).

A different rationale may be to focus on relaxing the definition of R(x)

R̃(x) =
{
y ∈ S(x) | d2y ≤ d2ȳ , ∀ȳ ∈ S̃(x)

}
,

for some S̃(x) ⊆ S(x), for all x ∈ X .

For Y = {0, 1}n2 , Shi et al. [2023] proposed the k-neighborhood set

Nk(y) =
{
ȳ ∈ {0, 1}n2 | ∥ȳ − y∥1 ≤ k

}
, for k ∈ Z+, k ≤ n2,

and the k-optimal reaction set

Rk(x) =
{
y ∈ S(x) | d2y ≤ d2ȳ , ∀ȳ ∈ Nk(y) ∩ S(x)

}
.
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Dual bounds: a locally optimal follower

k-optimal follower relaxation

min cx + d1y

s.t. (x , y) ∈ S (k-BP)

y ∈ Rk(x)

Let us look at an example of Knapsack Interdiction Problem from Shi et al. [2023]

At a glance

• (k-BP) can be formulated as a MILP;

• Dual bounds are tighter than S and P,
even for small k;

• (k-BP) converges to (MIBLP) rather
fast;

• (k-BP) bound comes at a reasonable
computational cost.
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Which relaxation?

• What relaxation is the “best” is ultimately an empirical question.

• It is tempting to think that a stronger relaxation (either S or (k-BP)) should be
better than a “simple” LP.

• However, employing a B&C to solve MILP subproblems equals to delegate part of
the same branching process that the “outer” B&C would undertake anyway.

• More importantly, re-optimization is crucial for cut generation.

• All in all, it only seems to make sense to use the “good old” LP relaxation for
bounding.
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Basic Idea: Identifying Infeasible Solutions

• When (x , y) ∈ P \ S, infeasibility is easy to verify.
• However for (x , y) ∈ S \ F , this might be a hard task.
• Usually, this is accomplished by solving the follower’s problem (an MILP) to

optimality.
• But maybe, looking at the “neighborhood” of y might give us information about the

(sub-)optimality of y for the second-level problem.

Second-level Improving Directions

Let (x̂ , ŷ) ∈ P. We say that w ∈ Zr2 ×Rn2−r2 is a direction (D). Moreover, we say that:

• d2w < 0 ⇒ w is improving (I), and

• ŷ + w ∈ P2(x̂) ⇒ w is feasible (F).

The set of all IFDs w.r.t. (x̂ , ŷ) is

W(x̂ , ŷ) =
{
w ∈ Zr2 × Rn2−r2 | d2w < 0, ŷ + w ∈ P2(x̂)

}
.

• This leads to an alternative method to check bilevel feasibility.

Lemma (Bilevel Feasibility Oracle)

For (x̂ , ŷ) ∈ S, we have (x̂ , ŷ) ∈ F ⇐⇒ W(x̂ , ŷ) = ∅.
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An Oracle based on Improving Directions

• We can describe W(x̂ , ŷ) as the points satisfying

d2w ≤ −1

G 2w ≥ b2 − A2x̂ − G 2ŷ (IFD)

w ≥ −ŷ

w ∈ Zr2 × Rn2−r2 .

• (IFD) is formally equivalent to solving the follower’s problem.
• However, we can plug (IFD) with a variety of obj. functions to obtain directions

with favorable properties, e.g.,

• min 1 ⇒ Checking Bilevel Feasibility

• min d2w ⇒ Find the best follower’s solution for the given x̂

• Or, we can solve (IFD) with some kind of local search and optimize nonlinear obj.
functions such as

• min ∥w∥2 ⇒ Find the “shortest” IFD.
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Cut Generation: Basic Principles

Valid Inequality

The triple (αx , αy , β) ∈ Rn1+n2+1 is a valid inequality for F if

F ⊆
{
(x , y) ∈ Rn1+n2 | αxx + αyy ≥ β

}
.

We refer to a valid inequality for F that is violated by a given solution of the current
relaxation as a cutting plane (cut).

Bilevel Free Set

A bilevel free set (BFS) is a set C ⊆ Rn1+n2 such that int(C) ∩ F = ∅.

General recipe for cuts

• Find a BFS C ⊆ Rn1+n2 ;

• Then inequalities valid for conv(int(C)) are also valid for F .
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Improving Direction Intersection Cuts (IDICs)

• Let (x̂ , ŷ) be an extreme point of conv(S) (or P) and let w ∈ W(x̂ , ŷ) (⇐ IFD).

Bilevel Free Set [Fischetti et al., 2018]

C(w) =
{
(x , y) ∈ Rn1+n2 | A2x + G 2y ≥ b2 − G 2w − 1, y + w ≥ −1

}
.

⇒ the set of points (x , y) such that w is an IFD w.r.t. y .

• Let V(x̂ , ŷ) ⊇ conv(S) (or P) be a radial cone with vertex (x̂ , ŷ).

• αxx + αyy = β is the hyperplane passing
through the intersection of C(w) and
V(x̂ , ŷ).

• (αx , αy , β) is valid for conv(F).

• ∥w∥2 affects the “depth” of the cut

• separation is not guaranteed when
(x̂ , ŷ) ∈ P \ S.
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IDIC and k-optimality

• Once again, assume Y = {0, 1}n2 .
• Given w ∈ W(x , y) with ∥w∥1 = k, we refer to the cut generated from C(w) as

k-IDIC.

k-IDIC closure

For k = 0, . . . , n2, we define

Sk =
{
(x , y) ∈ S | αxx + αyy ≥ β,

∀(αx , αy , β) ∈ Rn1+n2+1 s.t. (αx , αy , β) is a k̄-IDIC valid for F ,∀k̄ ≤ k
}
.

Theorem

For all 0 ≤ k ≤ n2, (x , y) ∈ Sk ⇐⇒ y ∈ Rk(x).
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Proof: IDIC and k-optimality

Theorem

For all 0 ≤ k ≤ n2, (x , y) ∈ Sk ⇐⇒ y ∈ Rk(x).

We need the following

Lemma (Local k-optimality, Shi et al. [2023])

Assume Y = {0, 1}n2 , let 0 ≤ k ≤ n2 integer and (x , y) ∈ S. Then
̸ ∃ w ∈ W(x , y) with ∥w∥1 ≤ k ⇐⇒ (x , y) is feasible for (k-BP) (i.e y ∈ Rk(x)).

Sketch of Proof. Assume (x , y) ∈ S, then

y ∈ Rk(x) ⇐⇒ ̸ ∃ w ∈ W(x , y) with ∥w∥1 ≤ k ∼=
∼= ̸ ∃ a k-IDIC violated by (x , y) with ∥w∥1 ≤ k ⇐⇒ (x , y) ∈ Sk .

F. Battista & T. K. Ralphs ISMP 2024 July 24th, 2024 15 / 20



Takeaways

• IDs unify the bilevel feasibility check and the generation of strong inequalities.

• The existence of an IFD for a given solution of the current relaxation is sufficient
condition for bilevel infeasibility.

• By generating IDICs, we are iteratively restoring local/global-optimality condition of
the follower.
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Computational Results: The Setup

MibS [Tahernejad et al., 2020]

Branch&Cut open-source solver for MIBLPs (available at www.coin-or.org)
• Bounding

• Dual bound ⇒ Compute optimal (x̂ , ŷ) ∈ P (LP relaxation)
• Primal bound ⇒ Feasible solutions by solving follower’s problem (a MILP)

• Cut generation
• IDICs ⇒ find w by solving (IFD) as a MILP
• MILP cuts ⇒ when (x̂ , ŷ) ∈ P \ S

All other cuts are turned off. Defaults are used unless stated otherwise.

idB&C

Implemented modifying MibS:
• Bounding

• Dual bound ⇒ Compute optimal (x̂ , ŷ) ∈ P (LP relaxation)
• Primal bound ⇒ Feasible solutions when (x̂ , ŷ) ∈ S and W(x̂ , ŷ) = ∅

• Cut generation
• IDICs ⇒ find w with either a Local Search to enumerate solutions of (IFD), or

⇒ solve (IFD) as a MILP (necessary when (x̂ , ŷ) ∈ S and Local Search fails)
• MILP cuts ⇒ when (x̂ , ŷ) ∈ P \ S
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Computational Results: The Setup

Configurations

• Mibs: version 1.2 (⇐ the “baseline”)

• idB&C-IDIC-LS: Using Local Search always (when we have the choice)

• idB&C-IDIC-LS-0-10: Using Local Search when 0 ≤ tree depth ≤ 10

• idB&C-IDIC-LS-10-inf: Using Local Search when tree depth ≥ 10

Dataset

The BENCHMARK (total of 179 instances) is made out of:

• Interdiction problems from Shi et al. [2023];

• Pure-integer from BOBILib (available at bobilib.org)

• Instances that required a Solution Time ∈ ]0, 1] ∪ [3600,∞[ seconds for all
configurations are excluded from the plots
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Analyze Results

CG Time Average CG Time

Solution Time Node Processed
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Final Remarks

• IDs unify the bilevel feasibility check and the generation of strong inequalities.

• Our B&C based on an oracle for the existence of IFDs shows promising results.

• In particular, when the search for IFDs is combined with a Local Search it achieves
both lower Cut Generation and Solution Time.

Future Works

• Implement more refined Control Mechanisms for the Local Search.

• Find good “off-the-shelf” defaults based on the problem structure.

Thanks for your attention!
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