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The Setting

® First-level (aka Leader) variables: x € X C Z" x Rm™"1
® Second-level (aka Follower) variables: y € Y C Z" x R™7"

Mixed-Integer Bilevel Linear Problem

min {cx—i— d'y | x € X,y € Pi(x),y € argmin{d’z | z € P2(x) N Y}} , (MIBLP)
Xy

where
Pr(x) = {y ER? | Gly > b — Alx},

Pa(x) = {y ER? | Gy > b —Azx}.

@ All input data are integer

® All first-level variables are integer and appear in second-level constraints

©® The feasible regions are all bounded
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Let us denote

Rational reaction set

R(x) = {y € S(x) | ’y < &y, ¥7 € S(x)}

= follower will respond optimally to leader’s decision.

Bilevel Feasible Points

F={(xy) €S|y € R(x)},

where
e P={(x,y) ER™ xR™ | y € P1(x) NP2(x)},
e S={(x,y) e XxY|(x,y) € P},

® S(x)={y € Y| (x,y) € S} = follower's feasible points for a given leader’s
decision.

Optimistic setup

Whenever |R(x)| > 1, follower selects the response most favorable for the leader.
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A Running Example

Let us consider the following example from Moore and Bard [1990]:

Y .
mp - x- 0y
° £ ee e s.t. y € argmin{y:
objective
optimal solution ® —5x+4y <6
x+2y <10
2x —y <15
2x + 10y > 15
y€Zy}
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Polyhedral Reformulation

Theorem (Tahernejad and Ralphs [2020])

Under the stated assumptions, we have that

min cx—l—d1 = min <:x—|—d1 . 1
(x,y)EF 4 (x,y)Econv(F) y ( )
y
F e o000
3 conv(F) AN\
conv(§)  -----
4 N
AN o(b—Ax) ——

min  —x — 10y

S ' \ st. (x,y) € conv(F)

1 2 3 4 5 6 7 8

® Reformulation (1) suggests a Branch-and-Cut algorithm, similar to that for
MILPs [DeNegre and Ralphs, 2009]

® Dual bounds can be obtained by optimizing over a relaxed feasible region

® The goal is to approximate conv(F) with linear inequalities
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Branch-and-Cut Algorithm

® The basic framework presents many similarities to that used for MILPs, but with at
least as many subtle differences.

® Bounding
® Dual bound =- A “tractable” relaxation strengthened with valid inequalities
® Primal bound = Feasible solutions

® Branching = Valid disjunctions

® Cut generation = Valid inequalities for conv(F)
® Search strategies

® Preprocessing methods

® Primal heuristics

® Control mechanisms

® |n this talk we focus on the highlighted components.

F. Battista & T. K. Ralphs ISMP 2024 July 24th, 2024



Dual bounds

Standard relaxations

® S = Relaxing the optimality constraint of the second-level problem (MILP
relaxation).

® P = Relaxing the optimality constraint of the second-level problem and integrality
constraints (LP relaxation).

A different rationale may be to focus on relaxing the definition of R(x)
Rix) = {y € S |’y < &5, ¥7 € S(x)},
for some S(x) C S(x), for all x € X.
For Y = {0,1}™, Shi et al. [2023] proposed the k-neighborhood set
Nily)={y €{0,1}™ |||y — yll, < k},for k € Zy, k < na,

and the k-optimal reaction set

Ru(x) = {y € S(x) | d’y < d%7, ¥y € Ni(y) mS(x)} .
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Dual bounds: a locally optimal follower

k-optimal follower relaxation

min  cx+d'y
st. (x,y) €S (k-BP)
y € Ri(x)

Let us look at an example of Knapsack Interdiction Problem from Shi et al. [2023]

At a glance
10 ® (k-BP) can be formulated as a MILP;
05 ® Dual bounds are tighter than S and P,

even for small k;
® (k-BP) converges to (MIBLP) rather

0.0

Deviation from the optimal value

o - i fast;
e G
10 " ® (k-BP) bound comes at a reasonable
’ T eomborhood sty 1 computational cost.
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Which relaxation?

® What relaxation is the “best” is ultimately an empirical question.

® |t is tempting to think that a stronger relaxation (either S or (k-BP)) should be
better than a “simple” LP.

® However, employing a B&C to solve MILP subproblems equals to delegate part of
the same branching process that the “outer” B&C would undertake anyway.

® More importantly, re-optimization is crucial for cut generation.

® Allin all, it only seems to make sense to use the “good old” LP relaxation for
bounding.
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Basic Idea: Identifying Infeasible Solutions

® When (x,y) € P\ S, infeasibility is easy to verify.

® However for (x,y) € S\ F, this might be a hard task.

® Usually, this is accomplished by solving the follower's problem (an MILP) to
optimality.

® But maybe, looking at the “neighborhood” of y might give us information about the
(sub-)optimality of y for the second-level problem.

Second-level Improving Directions

Let (X,y) € P. We say that w € Z™? X R™™" is a direction (D). Moreover, we say that:
® d’w < 0= w is improving (l), and
® 4+ w € Pr(X) = w is feasible (F).

The set of all IFDs w.r.t. (%,9) is

W 9) = {wez? xR" 7 | Fw <0, y+we PR}

® This leads to an alternative method to check bilevel feasibility.

Lemma (Bilevel Feasibility Oracle)

For (%,y) € S, we have (X,9) € F < W(X,y) = 0.
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An Oracle based on Improving Directions

® We can describe W(X, ) as the points satisfying

d’w <-1
G’w > b — A’ - G%y (IFD)
w >~y

weZ?xR?"?,

® (IFD) is formally equivalent to solving the follower’s problem.

® However, we can plug (IFD) with a variety of obj. functions to obtain directions
with favorable properties, e.g.,

® min1l = Checking Bilevel Feasibility

® mind?w = Find the best follower's solution for the given %

® Or, we can solve (IFD) with some kind of local search and optimize nonlinear obj.
functions such as

® min||w||, = Find the “shortest” IFD.
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Cut Generation: Basic Principles

Valid Inequality

The triple (o, o, 8) € R is 3 valid inequality for F if
FC{(xy) eR"™ | a"x+a’y > B}.

We refer to a valid inequality for F that is violated by a given solution of the current
relaxation as a cutting plane (cut).

Bilevel Free Set

A bilevel free set (BFS) is a set C C R™"" such that int(C) N.F = 0.

General recipe for cuts

® Find a BFS C C R™*™;

® Then inequalities valid for conv(int(C)) are also valid for F.
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Improving Direction Intersection Cuts (IDICs)

® Let (R,y) be an extreme point of conv(S) (or P) and let w € W(X, 7) (< IFD).

Bilevel Free Set [Fischetti et al., 2018]

C(w) = {(X,y) ER™™ | AXx+ Gy > - Gw—1y+w> —1}.

= the set of points (x, y) such that w is an IFD w.r.t. y.

® Let V(X,y) 2 conv(S) (or P) be a radial cone with vertex (%, 7).

5

. » ® o“x + o’y = [ is the hyperplane passing
through the intersection of C(w) and
B V(X, ).

* (o, a”,B) is valid for conv(F).

® ||w||, affects the “depth” of the cut

® separation is not guaranteed when
(%,9) € P\S.
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IDIC and k-optimality

® Once again, assume Y = {0,1}™.

® Given w € W(x, y) with ||w||; = k, we refer to the cut generated from C(w) as
k-IDIC.

k-IDIC closure

For k =0,..., n2, we define
s ={(wy) eS|ax+ay 2B,

V(a*, o, B) € R st (¥, a”, B) is a k-IDIC valid for F,Vk < k} .

Forall 0 < k < m, (x,y) € 8K <=y € Ri(x).
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Proof: IDIC and k-optimality

Forall 0 < k < m, (x,y) € Sk <=y € Ri(x).

We need the following

Lemma (Local k-optimality, Shi et al. [2023])

Assume Y = {0,1}™, let 0 < k < n; integer and (x,y) € S. Then
Aw e W(x,y) with ||w||; < k <= (x,y) is feasible for (k-BP) (i.e y € Ri(x)).

Sketch of Proof. Assume (x,y) € S, then

y € Ru(x) <= AweW(x,y) with [[w], <k=
> 7 a k-IDIC violated by (x,y) with ||w|, < k <= (x,y) e S
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® |Ds unify the bilevel feasibility check and the generation of strong inequalities.

® The existence of an IFD for a given solution of the current relaxation is sufficient
condition for bilevel infeasibility.

® By generating IDICs, we are iteratively restoring local/global-optimality condition of
the follower.

July 24th, 2024
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Computational Results: The Setup

MibS [Tahernejad et al., 2020]

Branch&Cut open-source solver for MIBLPs (available at www.coin-or.org)
® Bounding
® Dual bound = Compute optimal (%, ) € P (LP relaxation)
® Primal bound = Feasible solutions by solving follower’s problem (a MILP)
® Cut generation

® IDICs = find w by solving (IFD) as a MILP
® MILP cuts = when (X,y) € P\ S

All other cuts are turned off. Defaults are used unless stated otherwise.

idB&C

Implemented modifying MibS:
® Bounding
® Dual bound = Compute optimal (%,79) € P (LP relaxation)
® Primal bound = Feasible solutions when (%,9) € S and W(X,y) =0
® Cut generation
® IDICs = find w with either a Local Search to enumerate solutions of (IFD), or

= solve (IFD) as a MILP (necessary when (%, ) € S and Local Search fails)
® MILP cuts = when (X,9) € P\ S
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www.coin-or.org

Computational Results: The Setup

MibS [Tahernejad et al., 2020]

Branch&Cut open-source solver for MIBLPs (available at www.coin-or.org)
® Bounding

® Dual bound = imal (& 0N £ D (1D colavation)
* Primal bound ;] Feasible solutions by solving follower’s problem (a MILP) ||

e Cut tion
*[[IDICs = find w by solving (IFD) as a MILP ||
L X, VyJE F\o

All other cuts are turned off. Defaults are used unless stated otherwise.

idB&C
Implemented modifying MibS:
® Bounding
® Dual bound = imal (C 0) & D (1D valavatian)
* Primal bound ;] Feasible solutions when (%, 9) € S and W(%,7) =0 |
® Cut_generation

| IDICs = find w with either a Local Search to enumerate solutions of (IFD), or

= solve (IFD) as a MILP (necessary when (%, ) € S and Local Search fails)
® "VITCP cuts — wWhen (X,y) € F \ o
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Computational Results: The Setup

Configurations

® Mibs: version 1.2 (< the “baseline”)

® idB&C-IDIC-LS: Using Local Search always (when we have the choice)
® idB&C-IDIC-LS-0-10: Using Local Search when 0 < tree depth < 10
® idB&C-IDIC-LS-10-inf: Using Local Search when tree depth > 10

v

The BENCHMARK (total of 179 instances) is made out of:
® Interdiction problems from Shi et al. [2023];
® Pure-integer from BOBILib (available at bobilib.org)

A\

® Instances that required a Solution Time € ]0, 1] U [3600, co[ seconds for all
configurations are excluded from the plots
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Final Remarks

® |Ds unify the bilevel feasibility check and the generation of strong inequalities.
® Our B&C based on an oracle for the existence of IFDs shows promising results.

® |n particular, when the search for IFDs is combined with a Local Search it achieves
both lower Cut Generation and Solution Time.

® |mplement more refined Control Mechanisms for the Local Search.

Find good “off-the-shelf" defaults based on the problem structure.
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Final Remarks

® |Ds unify the bilevel feasibility check and the generation of strong inequalities.
® Our B&C based on an oracle for the existence of IFDs shows promising results.

® |n particular, when the search for IFDs is combined with a Local Search it achieves
both lower Cut Generation and Solution Time.

® |mplement more refined Control Mechanisms for the Local Search.

Find good “off-the-shelf" defaults based on the problem structure.

Thanks for your attention!
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