
Dealing with inequalities in large scale
Semidefinite Programs

A computational study

Federico Battista, Marianna De Santis
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Semidefinite Programs

We focus on solving large scale SDPs in the following form:

min 〈C ,X 〉
s.t. 〈Ai ,X 〉 ≤ bi , ∀i = 1, . . . , l

〈Aj ,X 〉 = bj , ∀j = l + 1, . . . ,m

X ∈ S+
n

(1)

where:

• 〈M,N〉 = trace (MN) is the standard inner product in Sn
• C ∈ Sn,

• Ai ∈ Sn, i = 1, . . . ,m + l ,

• b ∈ Rm+l .
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Reduction of SDPs in standard form

One can always reduce (1) into standard form. Let s ∈ Rl be a
vector of slack variables, with si ≥ 0, i = 1, . . . , l . Then we can
expand matrix X to X̄ ∈ Sn+l

X̄ :=

(
X 0n,l

0l ,n Diag(s)

)
Remark: X̄ � 0 ⇐⇒ X � 0, s ≥ 0.

By the same arguments, we expand matrices Ai ,Aj ,C to Āi , Āj ,
C̄ ∈ S+

n+l

Āi :=

(
Ai 0n,l
0l ,n eTi ei

)
, Āj :=

(
Aj 0n,l
0l ,n 0l ,l

)
, C̄ :=

(
C 0n,l

0l ,n 0l ,l

)
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Reduction of SDPs in standard form

Then (1) can be written as

min
〈
C̄ , X̄

〉
s.t. ĀX = b

X̄ ∈ S+
n+l

(2)

where

• b := (b1, . . . , bm) ∈ Rm

• Ā : Sn+l → Rm is the linear operator (ĀX̄ )i =
〈
Āi , X̄

〉
with

Āi ∈ Sn+l , i = 1, . . . ,m.
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Duality in Semidefinite Programs
The dual problem of (2) is defined as

max bT y

s.t. Ā>y + Z̄ = C̄

Z̄ ∈ S+
n+l ,

(3)

where Ā> : Rm → Sn+l is the adjoint operator of Ā, i.e

Ā>y =
∑
i

yi Ā
i for y ∈ Rm.

Note that the matrix Z̄ ∈ Sn+l is a “slack” matrix variable that
can be written as

Z̄ :=

(
Z 0n,l

0n,l diag(p)

)
,

with p ∈ Rl .
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Duality in Semidefinite Programs

Some assumptions:

• both the primal (2) and the dual (3) problems have strictly
feasible points (i.e. Slater’s condition is satisfied)

• then strong duality holds and (y , Z̄ , X̄ ) is optimal iff

ĀX̄ = b Ā>y + Z̄ = C̄ Z̄ X̄ = 0

X̄ ∈ S+
n+l Z̄ ∈ S+

n+l

(4)
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ADAL: Alternating Direction Augmented Lagrangian
ADAL1 is an ADMM capable to address SDPs in standard form
(2), based on the augmented Lagrangian built over the dual (3):

Lσ(y , Z̄ ; X̄ ) = bT y − 〈Ā>y + Z̄ − C̄ , X̄ 〉 − σ

2
‖Ā>y + Z̄ − C̄‖2.

Lσ(y , Z̄ ; X̄ ) is optimized by “alternating” between the y -variables
and the Z̄ -variables.
At each iteration, the new point (yk+1, Z̄ k+1, X̄ k+1) is computed
by the following steps

yk+1 = argmax
y∈Rm

Lσk (y , Z̄ k ; X̄ k), (5)

Z̄ k+1 = argmax
Z∈S+

n

Lσk (yk+1, Z̄ ; X̄ k), (6)

X̄ k+1 = X̄ k + σk(A>yk+1 + Z̄ k+1 − C̄ ). (7)

1Povh, Rendl, and Wiegele 2006; Wen, Goldfarb, and Yin 2010
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ADAL: Alternating Direction Augmented Lagrangian

Algorithm 1 Scheme of ADAL2

1: Choose σ > 0, X̄ ∈ S+
n+l , Z̄ ∈ S

+
n+l

2: repeat

3: y = (ĀĀ>)−1
(

1
σb − Ā( 1

σ X̄ − C̄ + Z̄ )
)

4: W̄ := X̄/σ − C̄ + Ā>y
5: Z̄ = −(W̄ )−
6: X̄ = σ(W̄ )+

7: Update σ
8: until convergence

2Wen, Goldfarb, and Yin 2010
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Memory issues when dealing with inequalities

One can use ADAL “as it is” to solve problems in form of (1)
reducing it to standard form (2).

The memory required to store the matrices C̄ , Āi , Āj , Z̄ and X̄ gets
large with the number l of inequalities.

It is computationally infeasible to deal with large scale problems,
even using efficient sparse matrix implementations.

Idea: rewrite the steps of ADAL in terms of the matrices C ,Ai ,Aj

and X , without performing the reduction to standard form
explicitly.
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Extending ADAL to deal with inequality constraints

y-update

y = (ĀĀ>)−1

(
1

σ
b − Ā(

1

σ
X̄ − C̄ + Z̄ )

)
The following on the linear map Ā applied to X̄ holds:

Ā(X̄ ) =



〈Ā1, X̄ 〉
...

〈Āl , X̄ 〉
〈Āl+1, X̄ 〉

...
〈Ām, X̄ 〉


=



〈A1,X 〉+ s1
...

〈Al ,X 〉+ sl
〈Al+1,X 〉

...
〈Am,X 〉


= A(X ) +

(
sT

0m−l

)
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Extending ADAL to deal with inequality constraints

y-update

y = (ĀĀ>)−1

(
1

σ
b −A(

1

σ
X − C + Z ) +

(
1
σ s

T + pT

0m−l

))
The operator ĀĀ> : Rm → Rm can be rewritten as

ĀĀ> = AA> + diag

(
1l

0m−l

)
,

since the 1 in position (n + i , n + i) of Āi , i = 1, . . . , l contributes
in the row-by-column product only in position (i , i).
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Extending ADAL to deal with inequality constraints

y-update

y =

(
AA> + diag

(
1l

0m−l

))−1( 1

σ
b−A(

1

σ
X − C + Z ) +

(
1
σ s

T + pT

0m−l

))
The operator ĀĀ> : Rm → Rm can be rewritten as

ĀĀ> = AA> + diag

(
1l

0m−l

)
,

since the 1 in position (n + i , n + i) of Āi , i = 1, . . . , l contributes
in the row-by-column product only in position (i , i).
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Extending ADAL to deal with inequality constraints

X̄ and Z̄ -update

W̄ =
X̄

σ
− C̄ + Ā>y

The adjoint operator ĀT : Rm → Sn+l of Ā is defined as

ĀT y =
i=1∑
m

yi Ā
i =


AT y 0n,l

y1

0n,l
. . .

yl


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Extending ADAL to deal with inequality constraints

X̄ and Z̄ -update

W̄ =


X
σ − C +A>y 0n,l

0n,l Diag

 sT

σ +

y1
...
yl





The adjoint operator ĀT : Rm → Sn+l of Ā is defined as

ĀT y =
i=1∑
m

yi Ā
i =


AT y 0n,l

y1

0n,l
. . .

yl


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Extending ADAL to deal with inequality constraints

X̄ and Z̄ -update

W̄ =


X
σ − C +A>y 0n,l

0n,l Diag

 sT

σ +

y1
...
yl





The projection of W̄ is computed via the spectral decomposition.

In order to compute eigenvectors and eigenvalues of W̄ we can
process it “block-wise”.

Then update Z̄ and X̄ accordingly.
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On the convergence of ADAL

The correctness and convergence of the scheme introduced is
inherited by the convergence of ADAL3.

In particular, Algorithm 1 can be interpreted as a fixed point
method and we can state the following result:

Theorem

The sequence {(X̄ k , yk , Z̄ k)} generated by Algorithm 1 from any
starting point (X̄ 0, y0, Z̄ 0) converges to a solution
(X̄ ∗, y∗, Z̄ ∗) ∈ Ω∗, where Ω∗ is the set of primal and dual solutions
of (2) and (3).

3Wen, Goldfarb, and Yin 2010
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Obtaining valid dual bounds: a post-processing procedure

Every dual feasible solution of an SDP relaxation yields a valid
bound on the optimal value of the related CO problem.

Following ideas developed in Cerulli et al. 2020, let Z̃ ∈ S+
n . If the

LP
max − bTineqλ+ bTeqµ

s.t. C +A>ineqλ−A>eqµ = Z̃

λ ≥ 0

(8)

has an optimal solution ỹ = (λ̃, µ̃) ∈ Rm, then (ỹ , Z̃ ) is a feasible
solution for the dual.

Idea: To approximately solve the primal (1) with ADAL to get
Z̃ ∈ S+

n , then try to get a dual feasible solution (and then a valid
bound) by addressing problem (8).
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Computational Experience

Comparison with SDPNAL+4, the state-of-the-art method for solving
large-scale SDPs that has been awarded with the
Beale-Orchard-Hays Prize in 2018.

Implementation of Extended ADAL in MATLAB and GUROBI as
linear programming solver for the post-processing procedure (8).

Benchmarks performed on:

• Random SDPs instances

• Maximum Stable Set and Graph Coloring SDP relaxations on
DIMACS5 graphs

Performance of the algorithms compared using performance
profiles as proposed by Dolan and J.Moré 2002.

4Yang, Sun, and Toh 2015
5Johnson and Trick 1996
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Computational Experience: Random Instances

The random instances are obtained from the instance generator
used in Malick et al. 2009.

• n : dimension of the matrices

• m : total number of constraints

• p : percentage of inequality constraints

CPU Time limit: 1800 seconds
Accuracy: 10−5
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Computational Experience: Random Instances

ADAL SDPNAL+

n m p (%) #sol CPU time #sol CPU time

250 25000 25 5 838.04 0 -
50 5 1166.45 0 -
75 5 1114.52 0 -

500 50000 25 5 217.61 5 106.28
50 5 260.43 5 221.66
75 5 325.71 5 250.97

1000 10000 25 5 136.63 5 49.52
50 5 157.21 5 58.22
75 5 242.63 5 71.38

50000 25 5 57.19 5 60.96
50 5 94.09 5 109.48
75 5 110.00 5 111.29

100000 25 5 83.15 5 136.53
50 5 127.37 5 181.13
75 5 155.05 5 184.21

Table: Results on random instances
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Computational Experience: Random Instances
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Figure: Performance profiles on CPU time. Comparison between ADAL

and SDPNAL+ on random instances (Higher is better)
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Computational Experience: Maximum Stable Set

Given an undirected graph G = (V ,E ), where V is the set of
vertices and E is the set of edges, a subset of S ⊆ V is called
stable if no two vertices in S are adjacent. The stability number
α(G ) denotes the maximum cardinality of a stable set in G .

We considered the following strengthening of the theta number6

ϑ+(G ) = max 〈J,X 〉

s.t. trace (X ) = 1

Xij = 0 {i , j} ∈ E (G )

X ≥ 0

X ∈ S+
n

6Lovász 1979
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Computational Experience: Maximum Stable Set

Instances: from the Second DIMACS Implementation challenge7

Post-processing procedure called every 200 iterations of ADAL and
at the very last iteration.

Keep in memory the best dual bound found by the post-processing
procedure (and then a valid bound on α(G ))

CPU time limit: 3600 seconds
Tolerance: 10−6

7Johnson and Trick 1996
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Computational Experience: Maximum Stable Set
ϑ+(G ) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound

DSJC1000-5 31.67 31.67 31.67 41.60 34.32 43.69
C500-9 83.58 83.58 83.58 30.55 8.32 31.03
C2000-5 44.56 44.56 44.56 389.59 534.67 398.86
brock800 1 41.87 41.87 41.87 24.31 11.67 20.96
brock800 3 41.88 41.88 41.88 24.52 13.02 25.87
p hat300-2 26.71 26.71 26.71 211.40 161.90 28.17
p hat500-2 38.56 38.56 38.56 580.86 537.38 92.52
p hat700-2 48.44 48.44 48.44 1161.67 295.99 218.26
p hat1000-2 54.84 54.84 54.84 1815.65 697.11 487.41
p hat1500-2 - - 76.46 - - 1826.66
p hat1500-3 113.65 113.65 113.65 3014.42 879.45 1886.51
keller4 13.47 13.47 13.47 3.35 1.46 2.69
sanr400 0.5 20.18 20.18 20.18 6.60 3.80 6.19
sanr400 0.7 33.97 33.97 33.97 7.21 4.05 7.49
hamming8-4 16.00 16.00 16.00 2.62 1.13 2.60
hamming10-4 42.67 42.67 42.67 97.36 31.77 93.90

Table: Results on ϑ+(G ), graphs from the second DIMACS
implementation challenge.
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Computational Experience: Maximum Stable Set
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Figure: Performance profiles on CPU time. Comparison among ADAL,
BestBound and SDPNAL+ on the computation of ϑ+(G ).
(Higher is better)
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Computational Experience: Graph Coloring

Given an undirected graph G = (V ,E ), a k-coloring is a partition
of V into k stable sets. The chromatic number χ(G ) is the
smallest integer k for which G has a k-coloring.

We consider the following formulation for ϑ̄+(G ) reported in
Laurent and Rendl 2005:

ϑ̄+(G ) = min t

s.t. Xii = t − 1 i ∈ V (G )

Xij = −1 {i , j} ∈ Ē (G )

Xij ≥ −1 {i , j} ∈ E (G )

X ∈ S+
n .
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Computational Experience: Graph Coloring

Instances: from the Second DIMACS Implementation challenge7

Post-processing procedure called every 200 iterations of ADAL and
at the very last iteration.

Keep in memory the best dual bound found by the post-processing
procedure (and then a valid bound on χ(G ))

CPU time limit: 3600 seconds
Tolerance: 10−6

7Johnson and Trick 1996
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Computational Experience: Graph Coloring

— ϑ̄+(G ) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound

DSJC125.1 4.14 4.14 4.14 69.01 22.88 1.72
DSJR500.1c - 83.75 83.75 - 1231.74 190.31
inithx.i.3 31.00 31.00 30.23 341.12 13.64 32.57
mulsol.i.1 49.00 49.00 - 18.89 3.48 -
school1 14.00 14.00 14.00 14.74 65.03 8.08
myciel7 2.82 2.82 2.82 7.35 7.60 1.34
mug100 1 3.00 3.00 3.00 19.59 84.51 0.46
mug100 25 3.00 3.00 3.00 26.20 84.97 0.46
ash608GPIA 3.33 3.33 3.31 265.72 41.34 129.25
ash958GPIA 3.33 3.33 - 529.68 124.35 -
1-Insertions 6 2.31 2.31 2.31 337.22 100.65 22.80
2-Insertions 5 2.16 2.16 2.16 544.91 109.90 52.67
3-Insertions 4 2.09 2.09 2.09 125.48 29.79 8.39
4-Insertions 4 2.06 2.06 2.06 563.58 130.23 8.89
2-FullIns 5 4.08 4.08 4.08 2670.31 184.26 381.59
5-FullIns 4 - 7.01 7.01 - 207.83 137.49
wap03a 40.00 40.00 40.00 1594.69 2668.31 1507.80
wap07a 40.00 40.00 40.00 309.93 426.97 145.89

Table: Results on ϑ̄+(G ), graphs from the second DIMACS
implementation challenge.
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Computational Experience: Graph Coloring
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Figure: Performance profiles on CPU time. Comparison among ADAL,
BestBound and SDPNAL+ on the computation of ϑ̄+(G ). (Higher is
better)
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Conclusions

We proposed a numerical comparison between ADAL, an ADMM
method for SDPs in general form and SDPNAL+, the
state-of-the-art method for solving large-scale SDPs.

Despite SDPNAL+ is more robust than ADAL, we could detect
classes of instances where our proposal is competitive.

The post-processing procedure allows to find dual feasible
solutions, which give a valid bound on optimal value of the primal.

When solving SDP relaxations of CO problems, it allows to stop
the execution of the ADMM as soon as a “good” bound is
obtained.

Furthermore, since a dual feasible solution is detected, it allows to
use reoptimization techniques within branch-and-bound
frameworks.

26



Thanks for your attention!
Questions?

Preprint https://arxiv.org/abs/2106.12411
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Performance Profiles

Given a set of solvers S and a set of problems P, the performance
of a solver s ∈ S on problem p ∈ P is compared against the best
performance obtained by any solver in S on the same problem.
The performance ratio is defined as

rp,s = tp,s/min{tp,s′ | s ′ ∈ S},

where tp,s is the measure we want to compare, and we consider a
cumulative distribution function

ρs(τ) = |{p ∈ P | rp,s ≤ τ}|/|P|.

The performance profile for s ∈ S is the plot of the function ρs .
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