On Semidefinite Lift-and-Project relaxations for Combinatorial Optimization Problems

F. Battista¹

Supervisors: M. De Santis¹, F. Rossi², S. Smriglio²

¹Dipartimento di Ingegneria informatica, Automatica e Gestionale Università di Roma "Sapienza"

²Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Università degli studi dell'Aquila

30th of November, 2022

The Stable Set Problem

Let G = (V, E) be a simple graph with $V = \{1, ..., n\}$ and E being its vertex and edge set (resp.)

A subset $S \subseteq V$ is **stable** iff all nodes in S are mutually not adjacent in G.

The Stable Set Problem (SSP) can be formulated as 0-1 LP:

$$\alpha(G) := \max \sum_{i \in V} x_i$$
s.t. $x_i + x_j \le 1 \quad \forall \ \{i, j\} \in E$

$$x \in \{0, 1\}^n$$
(1)

The SSP is strongly NP-Hard [Håstad 1999] (equivalent to Max Clique).

The Stable Set Problem

Let G = (V, E) be a simple graph with $V = \{1, ..., n\}$ and E being its vertex and edge set (resp.)

A subset $S \subseteq V$ is **stable** iff all nodes in S are mutually not adjacent in G.

The Stable Set Problem (SSP) can be formulated as 0-1 LP:

$$\alpha(G) := \max \sum_{i \in V} x_i$$
s.t. $x_i + x_j \le 1 \quad \forall \ \{i, j\} \in E$

$$x \in \{0, 1\}^n$$
(1)

The SSP is strongly NP-Hard [Håstad 1999] (equivalent to Max Clique).

One can strengthen the LP relaxation of (1) FRAC(G) by including valid linear inequalities (e.g. *cliques, odd holes* [Padberg 1973; Trotter Jr 1975]).

On the Lovász Theta function

In [Lovász 1979], the **Theta function** of a graph $\theta(G)$ was introduced.

Let us consider a feasible vector $x \in \{0,1\}^n$ for (1). Then, we define the *augmented matrix*

$$Y = \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^{\top} = \begin{pmatrix} 1 & x^{\top} \\ x & xx^{\top} \end{pmatrix}.$$
 (2)

By definition,

- $\operatorname{rank}(Y) = 1;$
- $Y \in \mathcal{S}_{n+1}^+$ (or $Y \succeq 0$);
- $x_i x_j = 0$ for $\{i, j\} \in E$;
- since $x_i^2 = x_i$, the first column equals the diagonal.

On the Lovász Theta function

Dropping the rank-1 constraint leads to the following Semidefinite (SDP) relaxation of the ${\bf SSP}$

$$\begin{array}{ll} \theta(G) = & \max & \sum_{i \in V} x_i \\ & \text{s.t.} & X_{ii} = x_i \quad \forall \ i \in V \\ & X_{ij} = 0 \quad \forall \ \{i, j\} \in E \\ & \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, \end{array}$$
(th-SDP)

with $X \in S_n$ (i.e. symmetric).

SDPs can be solved in polynomial time to arbitrary fixed precision [Grötschel *et al.* 1981].

Moreover, Lovász proved that

$$\alpha(G) \leq \theta(G).$$

Improving the Theta function: Previous works

To strengthen $\theta(G)$, one can add valid linear inequalities to (**th-SDP**).

• The inclusion of inequalities

$$X_{ij} \ge 0 \quad \forall \ \{i,j\} \notin E, \tag{3}$$

yields the formulation **th-SDP**₊ whit upper bound $\theta^+(G)$ [Schrijver 1979].

$$\alpha(G) \leq \qquad \qquad \theta^+(G) \leq \theta(G)$$

Safe bounding SDPs 00000000

Improving the Theta function: Previous works

To strengthen $\theta(G)$, one can add valid linear inequalities to (**th-SDP**).

• The inclusion of inequalities

$$X_{ij} \ge 0 \quad \forall \ \{i,j\} \notin E, \tag{3}$$

yields the formulation **th-SDP**₊ whit upper bound $\theta^+(G)$ [Schrijver 1979].

Further inclusion of

$$\begin{array}{ll} X_{ik} + X_{jk} & \leq x_k, \\ x_i + x_j + x_k & \leq 1 + X_{ik} + X_{jk}, \end{array} \quad \forall \ \{i, j\} \in E, \, k \neq i, j \tag{4}$$

yields the upper bound LS(G) [Lovász and Schrijver 1991].

$$\alpha(G) \leq \mathsf{LS}(G) \leq \theta^+(G) \leq \theta(G)$$

Remark

(4) arise from the application of Lovász-Schrijver $M_+(\cdot)$ operator to FRAC(G).

Lift-and-Project: Lovász and Schrijver's $M_+(\cdot)$ and $N_+(\cdot)$

[Lovász and Schrijver 1991] Let K be the convex hull of integer solutions of some 0-1 LP, along with its relaxation

 $L := \{x \in [0,1]^n : Ax \le b\} \supseteq K.$

Lift-and-Project: Lovász and Schrijver's $M_+(\cdot)$ and $N_+(\cdot)$

[Lovász and Schrijver 1991] Let K be the convex hull of integer solutions of some 0-1 LP, along with its relaxation

$$L := \{x \in [0,1]^n : Ax \le b\} \supseteq K.$$

() For i = 1, ..., n generate the set of non-linear inequalities

 $x_i(Ax-b) \leq 0$ $(1-x_i)(Ax-b) \leq 0$

2 Linearize using the augmented matrix Y and the substitutions:

$$Y = \begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \qquad x_i x_j = X_{ij}$$
$$x_i^2 = x_i$$

The resulting feasible region is denoted by $M_+(L)$.

③ The projection of $M_+(L)$ onto the x-space is denoted by $N_+(L)$, with

$$K \subseteq N_+(L) \subseteq L.$$

Improving the Theta function (cont.)

Experiments [Burer et al. 2006, Dukanovic et al. 2007] draw the following picture:

- $\theta(G)$ is often significantly stronger than LP relaxation.
- A substantial improvement over $\theta(G)$ is usually paid with a considerable additional computational cost
- The inclusion of inequalities (4) to (**th-SDP**) produces SDPs hard to solve with general-purpose methods and they often require specialized algorithms
- As a consequence, stronger bound LS(G) is often computationally inaccessible on large instances.

Improving the Theta function (cont.)

Experiments [Burer et al. 2006, Dukanovic et al. 2007] draw the following picture:

- $\theta(G)$ is often significantly stronger than LP relaxation.
- A substantial improvement over $\theta(G)$ is usually paid with a considerable additional computational cost
- The inclusion of inequalities (4) to (**th-SDP**) produces SDPs hard to solve with general-purpose methods and they often require specialized algorithms
- As a consequence, stronger bound LS(G) is often computationally inaccessible on large instances.

Question

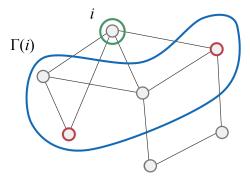
Can we do better using the Lovász-Schrijver Lift-and-Project operator?

Safe bounding SDPs 00000000

An alternative formulation for SSP

A hierarchy of LP formulations for the SSP can be obtained with the **Nodal inequalities** [Murray and Church 1997, Della Croce and Tadei 1994]

$$\sum_{j\in\Gamma(i)}x_j+r_ix_i\leq r_i\quad\forall i\in V,$$
(5)



Safe bounding SDPs 00000000

An alternative formulation for SSP

A hierarchy of LP formulations for the SSP can be obtained with the **Nodal inequalities** [Murray and Church 1997, Della Croce and Tadei 1994]

$$\sum_{j\in\Gamma(i)}x_j+r_ix_i\leq r_i\quad\forall i\in V,$$
(5)

with $r_i \geq \alpha(G[\Gamma(i)])$. Possible values are:

$$\alpha(G[\Gamma(i)]) \leq \lfloor \theta(G[\Gamma(i)]) \rfloor \leq |\Gamma(i)|.$$

We define the following polytope:

$$\mathsf{NOD}_{\alpha}(G) := \left\{ x \in [0,1]^n \ : \ \sum_{j \in \Gamma(i)} x_j + \alpha(G[\Gamma(i)]) x_i \leq \alpha(G[\Gamma(i)]) \quad \forall i \in V
ight\}.$$

Accordingly, we define $NOD_{\theta}(G)$ and $NOD_{\Gamma}(G)$.

Safe bounding SDPs 00000000

Lifting the Nodal polytope: $M_+(NOD(G))$

Questions

- **()** Can the operator $M_+(\cdot)$ improve the bound of $\text{NOD}_{\Gamma|\theta|\alpha}(G)$?
- **2** What are the consequences of different choice of r_i ?

Example: Let us choose some $i \in V$ and its variable x_i :

$$\sum_{i\in\Gamma(i)}x_j+r_ix_i-r_i \le 0$$

Safe bounding SDPs 00000000

Lifting the Nodal polytope: $M_+(NOD(G))$

Questions

- **()** Can the operator $M_+(\cdot)$ improve the bound of $\text{NOD}_{\Gamma|\theta|\alpha}(G)$?
- **2** What are the consequences of different choice of r_i ?

Example: Let us choose some $i \in V$ and its variable x_i :

$$x_i\left(\sum_{j\in\Gamma(i)}x_j+r_ix_i-r_i\right)\leq 0$$

Safe bounding SDPs 00000000

Lifting the Nodal polytope: $M_+(NOD(G))$

Questions

- **()** Can the operator $M_+(\cdot)$ improve the bound of $\text{NOD}_{\Gamma|\theta|\alpha}(G)$?
- **2** What are the consequences of different choice of r_i ?

Example: Let us choose some $i \in V$ and its variable x_i :

$$x_i \left(\sum_{j \in \Gamma(i)} x_j + r_i x_i - r_i \right) \le 0$$
$$\sum_{j \in \Gamma(i)} x_i x_j + r_i x_i^2 - r_i x_i \le 0.$$

Linearize by
$$x_i x_j = X_{ij}, x_i^2 = x_i$$
.

Safe bounding SDPs 00000000

Lifting the Nodal polytope: $M_+(NOD(G))$

Questions

- **()** Can the operator $M_+(\cdot)$ improve the bound of $NOD_{\Gamma|\theta|\alpha}(G)$?
- **2** What are the consequences of different choice of r_i ?

Example: Let us choose some $i \in V$ and its variable x_i :

$$x_i \left(\sum_{j \in \Gamma(i)} x_j + r_i x_i - r_i\right) \le 0$$
$$\sum_{i \in \Gamma(i)} x_i x_j + r_i x_i^2 - r_i x_i \le 0.$$

Linearize by
$$x_i x_j = X_{ij}, x_i^2 = x_i$$
.

We obtain:

$$\sum_{j\in\Gamma(i)}X_{ij}\leq 0$$

A new hierarchy of SDP relaxations: $M_+(NOD_{\Gamma|\theta|\alpha}(G))$

Consider the following subset of constraints produced by $M_+(\cdot)$:

 $X_{ij} \ge 0$ $\forall i, j \in V, i \neq j$ (6)

$$\sum_{j\in\Gamma(i)}X_{ij}\leq 0 \qquad \qquad \forall i\in V \qquad (7)$$

$$\sum_{j\in\Gamma(i)\setminus\{k\}} X_{jk} \le (r_i - 1)x_k \qquad \forall i, k \in V, k \in \Gamma(i)$$
(8)

$$\sum_{j\in\Gamma(i)}X_{jk}\leq r_ix_k-r_iX_{ik}\qquad \forall i,k\in V,k\notin\Gamma(i) \tag{9}$$

$$X_{ii} = x_i \qquad \forall i \in V \qquad (10)$$
$$Y = \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$$

Remarks:

- (6) and (7) are independent from r_i , while (8) and (9) are not
- (10) are added from the operator to enforce the structure of Y

Y

Lifting $M_+(\cdot)$ to Nodal inequalities

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Main Result

Lemma

For any value
$$r_i \ge \alpha(G[\Gamma(i)])$$
, $OPT(M_+(NOD_r(G))) \le \theta^+(G)$.

Proof: Let us consider the following relaxation of $M_+(NOD_r(G))$:

$$\max \sum_{i \in V} x_i$$

s.t. $X_{ij} \ge 0$ $\forall i, j \in V, i \neq j$ (6)
$$\sum_{\substack{j \in \Gamma(i) \\ X_{ii} = x_i \\ Y \succ 0}} X_{ij} \le 0$$
 $\forall i \in V$ (7)

Lifting $M_+(\cdot)$ to Nodal inequalities

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Main Result

Lemma

For any value
$$r_i \ge \alpha(G[\Gamma(i)])$$
, $OPT(M_+(NOD_r(G))) \le \theta^+(G)$.

Proof: Let us consider the following relaxation of $M_+(NOD_r(G))$:

$th extsf{-}SDP^+$		Γ	
$\max \sum x_i$		$\max \sum_{i \in V} x_i$	
$\overline{i \in V}$	$\forall : : \in V : \langle : \rangle$	s.t. $X_{ij} \ge 0$	$\forall i, j \in V, i \neq j$ (6)
s.t. $X_{ij} \ge 0$ $X_{ii} = 0$	$\forall i, j \in V, i \neq j \\ \forall \ \{i, j\} \in E$	$\sum X_{ij} \leq 0$	$\forall i \in V$ (7)
$X_{ii} = x_i$	$\forall i \in V$	$j \in \Gamma(i)$	
$Y \succeq 0$		$X_{ii} = x_i$ $Y \succ 0$	$\forall i \in V$ (10)

Inequalities (6) and (7) imply $X_{ij} = 0 \quad \forall \{i, j\} \in E$.

th-SDP⁺

Lifting $M_+(\cdot)$ to Nodal inequalities

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Main Result

Lemma

For any value
$$r_i \ge \alpha(G[\Gamma(i)])$$
, $OPT(M_+(NOD_r(G))) \le \theta^+(G)$.

Proof: Let us consider the following relaxation of $M_+(NOD_r(G))$:

$\max \sum_{i \in V} x_i$		$\max \sum_{i \in V} x_i$	
s.t. $X_{ij} \geq 0$	$\forall i, j \in V, i \neq j$	s.t. $X_{ij} \geq 0$	$orall i,j \in V, i eq j$ (6)
$X_{ij}=0$	$\forall \ \{i,j\} \in E$	$X_{ij}=0$	$\forall \ \{i,j\} \in E$
$X_{ii} = x_i$	$\forall i \in V$	$X_{ii} = x_i$	$\forall i \in V$ (10)
$Y \succeq 0$		$Y \succeq 0$	

Inequalities (6) and (7) imply $X_{ij} = 0 \quad \forall \{i, j\} \in E$. This implies that $M_+(\text{NOD}_r(G))$ is at least as restrictive as **th-SDP**⁺. \Box

Numerical results: Setup

Both $M_+(FRAC(G))$ and $M_+(NOD_{\alpha|\theta|\Gamma}(G))$ are strengthenings of **th-SDP**⁺.

Algorithm Kelley's cutting-plane scheme [Kelley 1960]

- 1: Let $\Pi = \emptyset$
- 2: Solve th-SDP+
- 3: repeat
- 4: Include to Π the 1000 most violated cuts from the current solution
- 5: Solve th-SDP⁺ $\cap \Pi$
- 6: until No more violated cuts are identified or
- 7: The *objective value* is not improving substantially

SDP Solver:

• ADMM SDPNAL+ [Yang, Sun, and Toh 2015] (MATLAB)

Instances:

- Erdös–Rényi G(n, p) random graphs from [Letchford et al. 2020],
- DIMACS Second Challenge instances [Johnson and Trick 1996]

Federico Battista (Sapienza)

Safe bounding SDPs 00000000

Numerical results: Random Instances (1)

		$\theta^+(G)$	$M_+(NOD_{\Gamma}(G))$			$M_+(NOD_{\theta}(G))$			$M_+(NOD_{\alpha}(G))$		
n	р	Gap	Gap	Cuts	CPU-time	Gap	Cuts	CPU-time	Gap	Cuts	CPU-time
150	1	12.954	12.953	1.4	7.822	12.952	6.4	10.662	12.952	6.4	9.264
	2	20.269	20.269	0.0	2.894	20.269	0.2	3.972	20.269	0.2	3.420
	3	22.330	22.330	0.0	1.962	22.330	1.0	2.520	22.330	1.0	2.378
	4	28.268	28.268	0.0	1.282	28.268	2.4	2.604	28.266	6.8	2.632
	5	24.861	24.861	0.0	1.186	24.809	34.6	3.146	24.362	193.2	3.514
	6	21.161	21.161	0.0	1.300	19.859	539.2	8.144	17.281	1095.4	10.900
	7	14.027	14.027	0.0	1.334	6.694	1451.4	16.066	6.200	1479.0	15.202
	8	10.140	10.140	0.0	2.652	3.441	1250.2	15.570	3.441	1250.2	14.856
	9	1.378	1.378	0.0	13.492	1.071	926.0	49.826	1.071	926.0	54.250
225	1	22.934	22.934	0.0	7.800	22.934	0.0	7.896	22.934	0.0	7.564
	2	32.506	32.506	0.0	5.034	32.506	0.0	4.636	32.506	0.0	4.304
	3	34.482	34.482	0.0	3.274	34.482	0.0	3.320	34.482	0.2	3.622
	4	38.547	38.547	0.0	2.170	38.547	0.4	2.530	38.524	20.2	4.282
	5	35.876	35.876	0.0	1.828	35.873	4.8	3.524	33.947	1088.8	14.466
	6	32.497	32.497	0.0	1.918	32.133	255.2	5.876	24.985	2000.0	18.024
	7	26.023	26.023	0.0	1.790	20.533	1903.2	21.770	13.745	2825.2	34.120
	8	15.208	15.208	0.0	2.746	8.088	2000.0	24.756	0.149	1914.2	194.072
	9	12.293	12.293	0.0	5.328	4.074	2600.0	33.162	4.074	2600.0	32.476
300	1	31.124	31.124	0.0	10.250	31.124	0.0	10.006	31.124	0.0	10.370
	2	46.238	46.238	0.0	7.538	46.238	0.0	7.160	46.238	0.0	7.416
	3	48.426	48.426	0.0	5.428	48.426	0.0	5.534	48.426	0.0	5.330
	4	50.228	50.228	0.0	3.266	50.228	0.0	3.254	50.166	76.8	6.572
	5	46.061	46.061	0.0	2.334	46.061	0.0	2.652	41.439	2000.0	23.406
	6	39.956	39.956	0.0	2.412	39.850	129.4	6.038	26.444	3000.0	42.344
	7	31.619	31.619	0.0	2.284	28.331	1813.6	25.180	11.347	4000.0	67.134
	8	29.809	29.809	0.0	3.614	19.988	2200.0	41.766	11.667	3600.0	69.064
	9	23.160	23.160	0.0	6.256	6.224	3800.0	90.712	5.681	4200.0	97.612

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Numerical results: Random Instances (1)

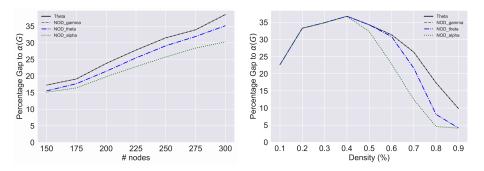


Figure: Average percentage gap of SDP bounds on Erdös–Rényi G(n, p) random graphs

Safe bounding SDPs 00000000

Numerical results: Random Instances (2)

		$NOD_{\alpha}(G)$	θ	+(G)	$M_+(NOD_{\alpha}(G))$			$M_{+}(FRAC(G))$		
n	р	Gap	Gap	CPU-time	Gap	Cuts	CPU-time	Gap	Cuts	CPU-time
150	0.1	32.117	12.954	4.358	12.952	6.4	9.264	11.369	1311.8	17.888
	0.2	75.793	20.269	2.910	20.269	0.2	3.420	20.109	187.2	5.642
	0.3	82.288	22.330	1.720	22.330	1.0	2.378	22.316	27.0	3.154
	0.4	75.183	28.268	1.144	28.266	6.8	2.632	28.265	5.6	2.456
	0.5	56.020	24.861	1.096	24.362	193.2	3.514	24.860	1.6	2.230
	0.6	39.308	21.161	1.332	17.281	1095.4	10.900	21.161	0.6	1.988
	0.7	23.890	14.027	1.280	6.200	1479.0	15.202	14.026	0.8	2.434
	0.8	14.920	10.140	2.954	3.441	1250.2	14.856	10.137	1.4	4.442
	0.9	8.900	1.378	15.110	1.071	926.0	54.250	1.341	8.0	27.070
225	0.1	54.825	22.934	7.556	22.934	0.0	7.564	22.559	798.4	27.196
	0.2	112.700	32.506	4.294	32.506	0.0	4.304	32.503	11.4	9.216
	0.3	97.343	34.482	3.214	34.482	0.2	3.622	34.482	0.6	4.530
	0.4	81.214	38.547	2.134	38.524	20.2	4.282	38.547	0.0	2.370
	0.5	59.427	35.876	1.876	33.947	1088.8	14.466	35.876	0.2	2.504
	0.6	43.044	32.497	1.860	24.985	2000.0	18.024	32.497	0.0	2.212
	0.7	29.957	26.023	1.782	13.745	2825.2	34.120	26.023	0.0	2.232
	0.8	13.733	15.208	2.730	0.149	1914.2	194.072	15.208	0.0	3.172
	0.9	8.130	12.293	5.274	4.074	2600.0	32.476	12.293	0.0	5.812
300	0.1	75.661	31.124	10.342	31.124	0.0	10.370	31.047	256.2	23.402
	0.2	137.919	46.238	7.386	46.238	0.0	7.416	46.237	1.4	12.340
	0.3	113.088	48.426	5.288	48.426	0.0	5.330	48.426	0.0	5.694
	0.4	89.040	50.228	3.086	50.166	76.8	6.572	50.228	0.0	3.682
	0.5	62.433	46.061	2.556	41.439	2000.0	23.406	46.061	0.0	3.362
	0.6	42.224	39.956	2.474	26.444	3000.0	42.344	39.956	0.0	3.414
	0.7	23.650	31.619	2.216	11.347	4000.0	67.134	31.619	0.0	3.390
	0.8	23.333	29.809	3.426	11.667	3600.0	69.064	29.809	0.0	4.432
	0.9	7.090	23.160	6.302	5.681	4200.0	97.612	23.160	0.0	7.702

Lifting $M_{+}(\cdot)$ to Nodal inequalities 000000000

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Numerical results: Random Instances (2)

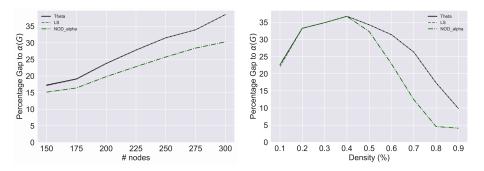


Figure: Average percentage gap of SDP bounds on Erdös–Rényi G(n, p) random graphs

Safe bounding SDPs 00000000

Numerical results: DIMACS Instances

	θ	+(G)	M	+(NOD	_α (G))	$M_+(FRAC(G))$		
Graph	Gap	CPU-time	Gap	Cuts	CPU-time	Gap	Cuts	CPU-time
brock200_1	29.508	3.53	29.508	0	3.55	29.505	10	6.47
brock200_2	17.758	1.59	16.795	659	12.31	17.758	0	1.81
brock400_1	45.670	11.79	45.670	0	11.83	45.670	0	12.66
brock400_2	35.160	12.16	35.160	0	12.23	35.160	0	12.85
brock800_1	82.032	19.27	80.646	2000	64.28	-	-	-
brock800_2	75.435	19.33	73.896	2000	72.00	-	-	-
brock800_3	67.530	19.83	66.043	2000	63.54	-	-	-
brock800_4	61.541	19.17	60.039	2000	63.59	-	-	-
p_hat300-1	25.253	8.98	7.288	3000	120.48	25.253	0	9.95
p_hat300-2	6.855	80.75	6.768	727	310.26	6.317	988	206.70
p_hat500-1	44.533	17.27	18.721	5000	381.28	-	-	-
p_hat500-2	48.306	190.29	48.225	1000	918.25	47.863	1043	682.15
p_hat700-1	36.774	33.90	2.709	7000	2038.55	-	-	-
p_hat700-2	10.091	426.60	10.023	1000	1270.03	-	-	-
DSJC500-5	73.621	6.01	58.014	4000	85.91	73.621	0	9.79
hamming10-4	6.667	29.41	6.667	0	29.87	-	-	-
keller4	22.417	4.24	22.236	144	12.24	22.388	48	8.15
keller5	14.799	81.25	14.799	0	81.49	-	-	-
MANN_a27	5.367	9.26	4.752	1000	76.14	4.057	1212	631.01
sanr200_0.9	16.440	6.49	16.440	1	13.67	15.786	1060	27.41
sanr400_0.5	55.217	4.05	46.952	3000	52.79	55.217	0	5.89
sanr400_0.7	61.746	7.38	61.746	0	7.46	61.746	0	8.45

Conclusions

We introduced a new hierarchy of SDP relaxations for the Stable Set Problem:

- The first level is at least as strong as the Schrijver relaxation
- Stronger levels may substantially outperform $\theta^+(G)$ and LS(G) on dense graphs
- This behaviour scales well as the size of the graph increases
- SDPNAL+ along with a Kelley's cutting plane allowed us to compute SDP bounds within a reasonable overhead of time w.r.t. $\theta^+(G)$

Lifting $M_+(\cdot)$ to Nodal inequalities

On solving large scale SDPs 000000 Safe bounding SDPs 00000000

Conclusions

What's next?

Short-term question 1 (Ongoing)

Are there special graphs for which $N_+(NOD(G)) = STAB(G)$? Related work: Definition of LS-perfect graphs in [Bianchi et al. 2017]

Short-term question 2 (Ongoing)

What about $M_+(\cdot)$ application to LP relaxations of **Graph Coloring Problem**?

Long-term question

Is there an algorithm to identify a subset of variables to which apply the lifting $M_+(\cdot)$ while still lead to a significant improvement of the bound?

On solving large scale SDPs •••••• Safe bounding SDPs 00000000

SDPs with inequalities

We focus on SDPs in the following form:

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle \leq b_i, \qquad \forall \ i = 1, \dots, l \\ & \langle A^j, X \rangle = b_j, \qquad \forall \ j = l+1, \dots, m \\ & X \in \mathcal{S}_n^+ \end{array}$$
 (SDP)

where:

- $\langle M,N
 angle = tr(MN)$ is the standard inner product in S_n
- $C \in S_n$,
- $A^i \in \mathcal{S}_n$, $i = 1, \ldots, m$,
- $b \in \mathbb{R}^m$.

On solving large scale SDPs •••••• Safe bounding SDPs 00000000

SDPs with inequalities

Reduce (SDP) in standard form and write the dual:

$$\begin{array}{ll} \min & \left\langle \bar{C}, \bar{X} \right\rangle \\ \text{s.t.} & \bar{\mathcal{A}}X = b \\ \bar{X} \in \mathcal{S}^+_{n+1} \end{array}$$

where

•
$$\bar{\mathcal{A}}: \mathcal{S}_{n+l} \to \mathbb{R}^m$$
 with $(\bar{\mathcal{A}}X)_i = \langle \bar{\mathcal{A}}^i, X \rangle$, $\bar{\mathcal{A}}^i \in \mathcal{S}_{n+l}$, $i = 1, \dots, m$.

On solving large scale SDPs •••••• Safe bounding SDPs 00000000

SDPs with inequalities

Reduce (SDP) in standard form and write the dual:

$$\begin{array}{ll} \min & \left\langle \bar{C}, \bar{X} \right\rangle & \max & b^\top y \\ \text{s.t.} & \bar{\mathcal{A}}X = b & & \text{s.t.} & \bar{\mathcal{A}}^\top(y) + \bar{Z} = \bar{C} & (\text{SDPS}) \\ & \bar{X} \in \mathcal{S}_{n+l}^+ & & \bar{Z} \in \mathcal{S}_{n+l}^+, \end{array}$$

where

•
$$\bar{\mathcal{A}}: S_{n+l} \to \mathbb{R}^m$$
 with $(\bar{\mathcal{A}}X)_i = \langle \bar{\mathcal{A}}^i, X \rangle$, $\bar{\mathcal{A}}^i \in S_{n+l}$, $i = 1, ..., m$.
• $\bar{\mathcal{A}}^\top: \mathbb{R}^m \to S_{n+l}$ is the adjoint operator $\bar{\mathcal{A}}^\top(y) := \sum_i y_i \bar{\mathcal{A}}_i$

On solving large scale SDPs ○●○○○○ Safe bounding SDPs 00000000

On solving SDPs with ADMMs

Main tools for solving **SDPS**:

Interior-point methods [Nesterov and Nemirovskii 1994]

- Good precision and convergence for small/medium size SDPs
- Impractical for large scale SDPs due to memory requirements

Alternating Direction Methods of Multipliers [Malick et al. 2009]

- Better scalability on instances with large number of constraints
- May require more time to reach high accuracy

ADMMs are more suitable for solving SDPs obtained by $M_{+}(\cdot)$ operator.

ADAL: Alternating Direction Augmented Lagrangian

ADAL [Wen et al. 2010] optimizes the augmented Lagrangian of the dual SDPS:

$$\max_{y\in\mathbb{R}^m,\ \bar{Z}\in\mathcal{S}^+_{n+\ell}}L_{\sigma}(y,\bar{Z};\bar{X})=b^Ty-\langle\bar{\mathcal{A}}^\top(y)+\bar{Z}-\bar{C},\bar{X}\rangle-\frac{\sigma}{2}\|\bar{\mathcal{A}}^\top(y)+\bar{Z}-\bar{C}\|^2.$$

At each iteration, the new point $(y^{k+1}, \overline{Z}^{k+1}, \overline{X}^{k+1})$ is given by:

$$y^{k+1} = \operatorname*{argmax}_{y \in \mathbb{R}^m} L_{\sigma^k}(y, \bar{Z}^k; \bar{X}^k), \tag{11}$$

$$\bar{Z}^{k+1} = \operatorname*{argmax}_{\bar{Z} \in \mathcal{S}^+_{n+\ell}} \mathcal{L}_{\sigma^k}(y^{k+1}, \bar{Z}; \bar{X}^k), \tag{12}$$

$$\bar{X}^{k+1} = \bar{X}^k + \sigma^k (\mathcal{A}^\top (y^{k+1}) + \bar{Z}^{k+1} - \bar{C}).$$
(13)

ADAL: Alternating Direction Augmented Lagrangian

Algorithm Scheme of ADAL [Wen et al. 2010]

1: Choose $\sigma > 0$, $\bar{X}, \bar{Z} \in \mathcal{S}_{n+l}^+$

2: repeat

3:
$$y = (\bar{\mathcal{A}}\bar{\mathcal{A}}^{\top})^{-1} \left(\frac{1}{\sigma}b - \bar{\mathcal{A}}(\frac{1}{\sigma}\bar{X} - \bar{C} + \bar{Z})\right)$$

4:
$$\overline{W} := \overline{X}/\sigma - \overline{C} + \overline{A}^{\top}(y)$$

5:
$$\underline{Z} = -(\underline{W})_{-}$$

6:
$$X = \sigma(W)$$

7: Update σ

8: until convergence

KKT conditions in ADAL:

- Satisfied at every iteration: $\bar{X} \succeq 0, \ \bar{Z} \succeq 0, \ \bar{X}\bar{Z} = 0;$
- Converges when: $\overline{A}\overline{X} = b$, $\overline{A}^{\top}(y) + \overline{Z} = \overline{C}$.

ADAL: Alternating Direction Augmented Lagrangian

Pre-existing implementation [Wen et al. 2010]:

- MATLAB (commercial)
- Solves SDPs in standard form
- No actual support for inequality constraints

Our implementation:

- python (open source)
- Solves SDPs with both inequalities and equalities

Safe bounding SDPs 00000000

ADAL: Alternating Direction Augmented Lagrangian

Pre-existing implementation [Wen et al. 2010]:

- MATLAB (commercial)
- Solves SDPs in standard form
- No actual support for inequality constraints

Our implementation:

- python (open source)
- Solves SDPs with both inequalities and equalities

Experiment:

Comparison ADAL (python) vs SDPNAL+ [Yang, Sun, and Toh 2015]

Instances:

Random SDPs from the generator proposed in [Malick et al. 2009] (total: 150 instances)

CPU time limit: 1800 secs

Safe bounding SDPs 00000000

Numerical results: Random SDPs

				ADAL	SDPNAL+		
n	т	(% ineq.)	#sol	CPU-time	#sol	CPU-time	
250	25000	25	5	838.04	0	0 -	
		50	5	1166.45	0	-	
		75	5	1114.52	0	-	
500	50000	25	5	217.61	5	106.28	
		50	5	260.43	5	221.66	
		75	5	325.71	5	250.97	
1000	10000	25	5	136.63	5	49.52	
		50	5	157.21	5	58.22	
		75	5	242.63	5	71.38	
	50000	25	5	57.19	5	60.96	
		50	5	94.09	5	109.48	
		75	5	110.00	5	111.29	
	100000	25	5	83.15	5	136.53	
		50	5	127.37	5	181.13	
		75	5	155.05	5	184.21	

Table: Results on random instances

Safe bounding SDPs

When solving SDP relaxations of some Combinatorial Optimization problem, being able to compute safe bounds has a two-fold purpose:

- as a **post-processing** to "clean" the inaccuracy left by the ADMM;
- to stop prematurely the ADMM, when considering branch-and-bound frameworks, for example.

Let us consider the primal-dual pair:

min
$$\langle C, X \rangle$$
 max $b^{\top} y$
s.t. $\mathcal{A}(X) = b$ s.t. $C - \mathcal{A}^{\top}(y) = Z$ (SDP)
 $X \succeq 0$ $Z \succeq 0$

Assumption: strong duality holds for SDP.

Dual safe bounds (DB)

By weak duality, any dual feasible solution (y, Z) provides a bound on the optimal primal value. Based on this, [Cerulli et al. 2021] proposed the following:

Let $\tilde{Z} \succeq 0$, then if the linear program:

max
$$b^{\top}y$$

s.t. $C - \mathcal{A}^{\top}(y) = \tilde{Z}$ (D-LP)
y free,

is feasible, then $b^{\top}y^*$ is a safe bound on the primal **SDP**.

Dual safe bounds (DB)

By weak duality, any dual feasible solution (y, Z) provides a bound on the optimal primal value. Based on this, [Cerulli et al. 2021] proposed the following:

Let $\tilde{Z} \succeq 0$, then if the linear program:

max
$$b^{\top}y$$

s.t. $C - \mathcal{A}^{\top}(y) = \tilde{Z}$ (D-LP)
y free,

is feasible, then $b^{\top}y^*$ is a safe bound on the primal **SDP**.

Dual safe bound - Recap

What we need: $\tilde{Z} \succeq 0$ Computational burden: Solve D-LP

We are not guaranteed that the LP is always feasible.

Lifting $M_{+}(\cdot)$ to Nodal inequalities 000000000

On solving large scale SDPs 000000 Safe bounding SDPs

Rigorous error bound (EB)

[Jansson et al. 2008] instead, proposed the following:

Let $\tilde{x} \in \mathbb{R}_+$ s.t. $\lambda_{\max}(X^*) \leq \tilde{x}$, with X^* an optimal primal sol. of **SDP**. Given any $y \in \mathbb{R}^m$, set

4

$$\tilde{Z} = C - \mathcal{A}^{\top}(y),$$

then it can be proved that:

$$\langle C, X^* \rangle \geq b^\top y + \sum_{i:\lambda_i(\tilde{Z}) < 0} \tilde{x} \lambda_i(\tilde{Z}).$$

Lifting $M_+(\cdot)$ to Nodal inequalities 000000000

On solving large scale SDPs 000000 Safe bounding SDPs

Rigorous error bound (EB)

[Jansson et al. 2008] instead, proposed the following:

Let $\tilde{x} \in \mathbb{R}_+$ s.t. $\lambda_{\max}(X^*) \leq \tilde{x}$, with X^* an optimal primal sol. of **SDP**. Given any $y \in \mathbb{R}^m$, set

$$\tilde{Z} = C - \mathcal{A}^{\top}(y),$$

then it can be proved that:

$$\langle C, X^* \rangle \geq b^\top y + \sum_{i:\lambda_i(\tilde{Z}) < 0} \tilde{x} \lambda_i(\tilde{Z}).$$

Rigorous error bound - Recap

What we need: \tilde{x} s.t. $\lambda_{\max}(X^*) \leq \tilde{x}$ Computational burden: Compute eigenvalues of \tilde{Z} For structured SDPs, \tilde{x} may be known a priori. Lifting $M_{+}(\cdot)$ to Nodal inequalities 000000000

r

On solving large scale SDPs 000000 Safe bounding SDPs

Norm bound (NB)

Joint work with [J. Schwiddessen 2023+] Let X^* be an optimal solution of the primal. Suppose we know that $||X^*||_F \leq U$, for some U.

Hence, the optimal value of

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b \\ & ||X||_F \leq U \\ & X \succeq 0, \end{array}$$
 (P-Norm)

is the same of the primal **SDP**. By writing the Lagrangian of **P-Norm**, we can show that:

$$\mathsf{OPT}(\mathbf{P}\operatorname{\mathsf{-Norm}}) \geq b^\top y - U \left\| C - \mathcal{A}^\top(y) - Z \right\|_F,$$

$$\mathbb{R}^m, Z \succeq 0.$$

for any $y \in$

Lifting $M_{+}(\cdot)$ to Nodal inequalities

On solving large scale SDPs 000000 Safe bounding SDPs

Norm bound (NB)

Hence, the optimal value of

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b \\ & ||X||_F \leq U \\ & X \succeq 0, \end{array}$$
 (P-Norm)

is the same of the primal $\ensuremath{\textbf{SDP}}$. By writing the Lagrangian of $\ensuremath{\textbf{P-Norm}}$, we can show that:

$$\mathsf{OPT}(\mathbf{P}\operatorname{\textbf{-Norm}}) \geq b^{\top}y - U \left\| \mathcal{C} - \mathcal{A}^{\top}(y) - Z \right\|_{F},$$

for any $y \in \mathbb{R}^m, Z \succeq 0$.

Norm bound - Recap

What we need: U s.t. $||X^*||_F \le U$ Computational burden: Compute a norm. Again, for structured SDPs U may be known a priori.

26 / 30

Numerical results

Question

Are the Safe bounding procedures able to identify a "good" bound within the time needed by ADAL to converge?

Setup:

- ADAL (python) + Safe bounding procedures (applied every 200 iterations)
- CPU-time limit: 3600 secs

Comparison:

- Best safe bounds found from DB, EB and NB
- CPU-time needed to identify the best bound
- Overhead

Instances:

• th-SDP⁺ for Schrijver's number $\theta^+(G)$ on DIMACS instances

Remark: initial $\lambda_{\max}(X^*)$ and U can be obtained from $\frac{|V|}{2} \ge \alpha(G)$.

Lifting M₊(·) to Nodal inequalities 000000000 On solving large scale SDPs 000000 Safe bounding SDPs

Numerical results

	ADAL		Norm Bound		Error Bound			Dual Bound		
Graph	ObjVal	CPU-time	best	found at	best	found at	overhead	best	found at	overhead
DSJC1000-5	31.67	33.85	31.93	25.75	55.76	26.19	0.43	31.67	32.62	4.56
C2000-5	44.56	150.67	45.31	117.69	136.03	119.01	1.32	44.56	145.41	18.95
C2000-9	177.73	2836.23	177.78	2672.59	177.75	2726.72	40.40	177.95	1784.69	194.49
brock800_1	41.87	33.97	41.88	27.24	88.37	27.49	0.50	41.87	35.24	2.20
brock800_2	42.10	34.87	42.11	27.31	90.01	27.56	0.49	42.10	36.18	2.23
brock800_3	41.88	33.46	41.89	27.75	84.12	27.99	0.48	41.88	34.74	2.19
brock800_4	42.00	34.81	42.01	27.33	86.63	27.57	0.50	42.00	36.11	2.25
p_hat1000-1	17.52	404.67	17.52	115.77	17.57	116.09	1.61	17.52	88.78	27.78
p_hat1000-2	54.84	2852.66	54.84	2851.17	54.85	2851.48	31.70	54.85	302.03	245.96
p_hat1000-3	83.53	2337.28	83.53	694.69	83.54	695.04	8.38	83.53	242.76	154.07
p_hat1500-1	21.89	1118.44	21.89	295.59	21.99	296.27	3.45	21.89	216.50	79.24
p_hat1500-2	-	-	76.46	3565.92	76.48	3494.53	34.54	76.46	872.20	234.78
p_hat1500-3	113.65	3014.54	113.66	3014.01	113.66	3014.70	35.88	113.65	958.14	226.53
keller5	31.00	1281.91	31.00	499.35	31.62	499.55	6.73	31.00	755.56	67.24
keller6	-	-	63.03	1535.40	288.88	1541.51	20.91	63.00	1913.78	79.56
MANN_a27	132.76	838.69	132.76	561.87	132.77	475.86	8.62	132.94	340.53	43.47
hamming6-2	32.00	11.54	32.75	0.97	32.00	5.95	0.03	32.00	6.54	0.50
hamming8-2	128.00	1951.74	128.53	36.17	128.00	1245.57	23.90	128.00	419.50	104.14
hamming10-4	42.67	60.55	42.68	50.41	42.76	31.87	2.99	42.76	33.11	4.28

Safe bounding SDPs 000000●0

Conclusions

We proposed a numerically stable implementation of ADAL:

- suited for SDPs with inequalities;
- Competitive with state-of-the-art ADMM;

Safe bounding procedures within an ADMM:

- overcome to inaccuracies left by the algorithm;
- allow to stop the execution prematurely;

What's next?

Short-term question (Ongoing)

Can we use ADAL + Safe bounding procedures within a Branch-and-Bound framework?

Long-term question

Can we find a good starting point for the ADMM to enhance the convergence? ("Reoptimization techniques")

29/30

Thanks for your attention! Questions?

30 / 30